Cargando…

A systems biology approach uncovers a gene co-expression network associated with cell wall degradability in maize

Understanding the mechanisms triggering variation of cell wall degradability is a prerequisite to improving the energy value of lignocellulosic biomass for animal feed or biorefinery. Here, we implemented a multiscale systems approach to shed light on the genetic basis of cell wall degradability in...

Descripción completa

Detalles Bibliográficos
Autores principales: Cuello, Clément, Baldy, Aurélie, Brunaud, Véronique, Joets, Johann, Delannoy, Etienne, Jacquemot, Marie-Pierre, Botran, Lucy, Griveau, Yves, Guichard, Cécile, Soubigou-Taconnat, Ludivine, Martin-Magniette, Marie-Laure, Leroy, Philippe, Méchin, Valérie, Reymond, Matthieu, Coursol, Sylvie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938352/
https://www.ncbi.nlm.nih.gov/pubmed/31891625
http://dx.doi.org/10.1371/journal.pone.0227011
_version_ 1783484022586867712
author Cuello, Clément
Baldy, Aurélie
Brunaud, Véronique
Joets, Johann
Delannoy, Etienne
Jacquemot, Marie-Pierre
Botran, Lucy
Griveau, Yves
Guichard, Cécile
Soubigou-Taconnat, Ludivine
Martin-Magniette, Marie-Laure
Leroy, Philippe
Méchin, Valérie
Reymond, Matthieu
Coursol, Sylvie
author_facet Cuello, Clément
Baldy, Aurélie
Brunaud, Véronique
Joets, Johann
Delannoy, Etienne
Jacquemot, Marie-Pierre
Botran, Lucy
Griveau, Yves
Guichard, Cécile
Soubigou-Taconnat, Ludivine
Martin-Magniette, Marie-Laure
Leroy, Philippe
Méchin, Valérie
Reymond, Matthieu
Coursol, Sylvie
author_sort Cuello, Clément
collection PubMed
description Understanding the mechanisms triggering variation of cell wall degradability is a prerequisite to improving the energy value of lignocellulosic biomass for animal feed or biorefinery. Here, we implemented a multiscale systems approach to shed light on the genetic basis of cell wall degradability in maize. We demonstrated that allele replacement in two pairs of near-isogenic lines at a region encompassing a major quantitative trait locus (QTL) for cell wall degradability led to phenotypic variation of a similar magnitude and sign to that expected from a QTL analysis of cell wall degradability in the F271 × F288 recombinant inbred line progeny. Using DNA sequences within the QTL interval of both F271 and F288 inbred lines and Illumina RNA sequencing datasets from internodes of the selected near-isogenic lines, we annotated the genes present in the QTL interval and provided evidence that allelic variation at the introgressed QTL region gives rise to coordinated changes in gene expression. The identification of a gene co-expression network associated with cell wall-related trait variation revealed that the favorable F288 alleles exploit biological processes related to oxidation-reduction, regulation of hydrogen peroxide metabolism, protein folding and hormone responses. Nested in modules of co-expressed genes, potential new cell-wall regulators were identified, including two transcription factors of the group VII ethylene response factor family, that could be exploited to fine-tune cell wall degradability. Overall, these findings provide new insights into the regulatory mechanisms by which a major locus influences cell wall degradability, paving the way for its map-based cloning in maize.
format Online
Article
Text
id pubmed-6938352
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-69383522020-01-07 A systems biology approach uncovers a gene co-expression network associated with cell wall degradability in maize Cuello, Clément Baldy, Aurélie Brunaud, Véronique Joets, Johann Delannoy, Etienne Jacquemot, Marie-Pierre Botran, Lucy Griveau, Yves Guichard, Cécile Soubigou-Taconnat, Ludivine Martin-Magniette, Marie-Laure Leroy, Philippe Méchin, Valérie Reymond, Matthieu Coursol, Sylvie PLoS One Research Article Understanding the mechanisms triggering variation of cell wall degradability is a prerequisite to improving the energy value of lignocellulosic biomass for animal feed or biorefinery. Here, we implemented a multiscale systems approach to shed light on the genetic basis of cell wall degradability in maize. We demonstrated that allele replacement in two pairs of near-isogenic lines at a region encompassing a major quantitative trait locus (QTL) for cell wall degradability led to phenotypic variation of a similar magnitude and sign to that expected from a QTL analysis of cell wall degradability in the F271 × F288 recombinant inbred line progeny. Using DNA sequences within the QTL interval of both F271 and F288 inbred lines and Illumina RNA sequencing datasets from internodes of the selected near-isogenic lines, we annotated the genes present in the QTL interval and provided evidence that allelic variation at the introgressed QTL region gives rise to coordinated changes in gene expression. The identification of a gene co-expression network associated with cell wall-related trait variation revealed that the favorable F288 alleles exploit biological processes related to oxidation-reduction, regulation of hydrogen peroxide metabolism, protein folding and hormone responses. Nested in modules of co-expressed genes, potential new cell-wall regulators were identified, including two transcription factors of the group VII ethylene response factor family, that could be exploited to fine-tune cell wall degradability. Overall, these findings provide new insights into the regulatory mechanisms by which a major locus influences cell wall degradability, paving the way for its map-based cloning in maize. Public Library of Science 2019-12-31 /pmc/articles/PMC6938352/ /pubmed/31891625 http://dx.doi.org/10.1371/journal.pone.0227011 Text en © 2019 Cuello et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Cuello, Clément
Baldy, Aurélie
Brunaud, Véronique
Joets, Johann
Delannoy, Etienne
Jacquemot, Marie-Pierre
Botran, Lucy
Griveau, Yves
Guichard, Cécile
Soubigou-Taconnat, Ludivine
Martin-Magniette, Marie-Laure
Leroy, Philippe
Méchin, Valérie
Reymond, Matthieu
Coursol, Sylvie
A systems biology approach uncovers a gene co-expression network associated with cell wall degradability in maize
title A systems biology approach uncovers a gene co-expression network associated with cell wall degradability in maize
title_full A systems biology approach uncovers a gene co-expression network associated with cell wall degradability in maize
title_fullStr A systems biology approach uncovers a gene co-expression network associated with cell wall degradability in maize
title_full_unstemmed A systems biology approach uncovers a gene co-expression network associated with cell wall degradability in maize
title_short A systems biology approach uncovers a gene co-expression network associated with cell wall degradability in maize
title_sort systems biology approach uncovers a gene co-expression network associated with cell wall degradability in maize
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938352/
https://www.ncbi.nlm.nih.gov/pubmed/31891625
http://dx.doi.org/10.1371/journal.pone.0227011
work_keys_str_mv AT cuelloclement asystemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT baldyaurelie asystemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT brunaudveronique asystemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT joetsjohann asystemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT delannoyetienne asystemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT jacquemotmariepierre asystemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT botranlucy asystemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT griveauyves asystemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT guichardcecile asystemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT soubigoutaconnatludivine asystemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT martinmagniettemarielaure asystemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT leroyphilippe asystemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT mechinvalerie asystemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT reymondmatthieu asystemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT coursolsylvie asystemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT cuelloclement systemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT baldyaurelie systemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT brunaudveronique systemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT joetsjohann systemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT delannoyetienne systemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT jacquemotmariepierre systemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT botranlucy systemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT griveauyves systemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT guichardcecile systemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT soubigoutaconnatludivine systemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT martinmagniettemarielaure systemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT leroyphilippe systemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT mechinvalerie systemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT reymondmatthieu systemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize
AT coursolsylvie systemsbiologyapproachuncoversagenecoexpressionnetworkassociatedwithcellwalldegradabilityinmaize