Cargando…
Molecular Geometry Prediction using a Deep Generative Graph Neural Network
A molecule’s geometry, also known as conformation, is one of a molecule’s most important properties, determining the reactions it participates in, the bonds it forms, and the interactions it has with other molecules. Conventional conformation generation methods minimize hand-designed molecular force...
Autores principales: | Mansimov, Elman, Mahmood, Omar, Kang, Seokho, Cho, Kyunghyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938476/ https://www.ncbi.nlm.nih.gov/pubmed/31892716 http://dx.doi.org/10.1038/s41598-019-56773-5 |
Ejemplares similares
-
Masked graph modeling for molecule generation
por: Mahmood, Omar, et al.
Publicado: (2021) -
Compressed graph representation for scalable molecular graph generation
por: Kwon, Youngchun, et al.
Publicado: (2020) -
Uncertainty-aware prediction of chemical reaction yields with graph neural networks
por: Kwon, Youngchun, et al.
Publicado: (2022) -
Efficient learning of non-autoregressive graph variational autoencoders for molecular graph generation
por: Kwon, Youngchun, et al.
Publicado: (2019) -
Predicting lncRNA-protein interactions with bipartite graph embedding and deep graph neural networks
por: Ma, Yuzhou, et al.
Publicado: (2023)