Cargando…

The ability to manipulate ROS metabolism in pepper may affect aphid virulence

Myzus persicae has severe economic impact on pepper (Capsicum) cultivation. Previously, we identified two populations of M. persicae, NL and SW, that were avirulent and virulent, respectively on C. baccatum accession PB2013071. The transcriptomics approach used in the current study, which is the fir...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Mengjing, Voorrips, Roeland E., van Kaauwen, Martijn, Visser, Richard G. F., Vosman, Ben
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938493/
https://www.ncbi.nlm.nih.gov/pubmed/31908809
http://dx.doi.org/10.1038/s41438-019-0231-6
Descripción
Sumario:Myzus persicae has severe economic impact on pepper (Capsicum) cultivation. Previously, we identified two populations of M. persicae, NL and SW, that were avirulent and virulent, respectively on C. baccatum accession PB2013071. The transcriptomics approach used in the current study, which is the first study to explore the pepper−aphid interaction at the whole genome gene expression level, revealed genes whose expression is differentially regulated in pepper accession PB2013071 upon infestation with these M. persicae populations. The NL population induced ROS production genes, while the SW population induced ROS scavenging genes and repressed ROS production genes. We also found that the SW population can induce the removal of ROS which accumulated in response to preinfestion with the NL population, and that preinfestation with the SW population significantly improved the performance of the NL population. This paper supports the hypothesis that M. persicae can overcome the resistance in accession PB2013071 probably because of its ability to manipulate plant defense response especially the ROS metabolism and such ability may benefit avirulent conspecific aphids.