Cargando…

Genetic diversity in centipedegrass [Eremochloa ophiuroides (Munro) Hack.]

Genetic diversity is the heritable variation within and among populations, and in the context of this paper describes the heritable variation among the germplasm resources of centipedegrass. Centipedegrass is an important warm-season perennial C(4) grass belonging to the Poaceae family in the subfam...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jianjian, Guo, Hailin, Zong, Junqin, Chen, Jingbo, Li, Dandan, Liu, Jianxiu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938503/
https://www.ncbi.nlm.nih.gov/pubmed/31908807
http://dx.doi.org/10.1038/s41438-019-0228-1
Descripción
Sumario:Genetic diversity is the heritable variation within and among populations, and in the context of this paper describes the heritable variation among the germplasm resources of centipedegrass. Centipedegrass is an important warm-season perennial C(4) grass belonging to the Poaceae family in the subfamily Panicoideae and genus Eremochloa. It is the only species cultivated for turf among the eight species in Eremochloa. The center of origin for this species is southern to central China. Although centipedegrass is an excellent lawn grass and is most widely used in the southeastern United States, China has the largest reserve of centipedegrass germplasm in the world. Presently, the gene bank in China holds ~200 centipedegrass accessions collected from geographical regions that are diverse in terms of climate and elevation. This collection appears to have broad variability with regard to morphological and physiological characteristics. To efficiently develop new centipedegrass varieties and improve cultivated species by fully utilizing this variability, multiple approaches have been implemented in recent years to detect the extent of variation and to unravel the patterns of genetic diversity among centipedegrass collections. In this review, we briefly summarize research progress in investigating the diversity of centipedegrass using morphological, physiological, cytological, and molecular biological approaches, and present the current status of genomic studies in centipedegrass. Perspectives on future research on genetics and genomics and modern breeding of centipedegrass are also discussed.