Cargando…
Predicting Effective Diffusivity of Porous Media from Images by Deep Learning
We report the application of machine learning methods for predicting the effective diffusivity (D(e)) of two-dimensional porous media from images of their structures. Pore structures are built using reconstruction methods and represented as images, and their effective diffusivity is computed by latt...
Autores principales: | Wu, Haiyi, Fang, Wen-Zhen, Kang, Qinjun, Tao, Wen-Quan, Qiao, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938523/ https://www.ncbi.nlm.nih.gov/pubmed/31892713 http://dx.doi.org/10.1038/s41598-019-56309-x |
Ejemplares similares
-
Deep learning for diffusion in porous media
por: Graczyk, Krzysztof M., et al.
Publicado: (2023) -
Predicting porosity, permeability, and tortuosity of porous media from images by deep learning
por: Graczyk, Krzysztof M., et al.
Publicado: (2020) -
Modeling and scale-bridging using machine learning: nanoconfinement effects in porous media
por: Lubbers, Nicholas, et al.
Publicado: (2020) -
Lattice Boltzmann Modeling of Drying of Porous Media Considering Contact Angle Hysteresis
por: Qin, Feifei, et al.
Publicado: (2021) -
Imaging through diffuse media using multi-mode vortex beams and deep learning
por: Balasubramaniam, Ganesh M., et al.
Publicado: (2022)