Cargando…
A novel three-dimensional echocardiographic method for device size selection in patients undergoing ASD trans-catheter closure
BACKGROUND: Proper device size selection is a crucial step for successful ASD device closure. The current gold standard for device size selection is balloon sizing. Balloon sizing can be tedious, time consuming and increase fluoroscopy and procedure times as well as risk of complications. We aimed t...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938529/ https://www.ncbi.nlm.nih.gov/pubmed/31893314 http://dx.doi.org/10.1186/s43044-019-0038-7 |
Sumario: | BACKGROUND: Proper device size selection is a crucial step for successful ASD device closure. The current gold standard for device size selection is balloon sizing. Balloon sizing can be tedious, time consuming and increase fluoroscopy and procedure times as well as risk of complications. We aimed to establish a simple and accurate method for device size selection using three-dimensional echocardiographic interrogation of the ASD.This is a prospective observational study conducted over a period of 12 months. All patients underwent 2D TTE, three-dimensional echocardiographic assessment of the IAS and transesophageal echocardiogram. Comparison between echocardiographic variables was done using independent sample t test. Linear correlation was established between three dimensional echocardiographic variables and respective variables of device size and 2D TTE and TEE measurements. RESULTS: The study included 50 patients who underwent successful ASD device closure with properly sized device. There was no significant difference between 3D ASD maximum diameter and all diameters measured by TTE and TEE. There was a strong positive correlation between device size used for closure and both 3D measured ASD area (r = 0.907, P<0.0001) and 3D measured ASD circumference (r = 0.917, P<0.0001). Two regression equations were generated to determine proper device size where Device size = 10.8 + [3.95 x 3D ASD area] and Device size = [3.85 x 3D ASD circumference] -1.02 CONCLUSION: Three-dimensional echocardiogram can provide a simple and accurate method for device size selection in patients undergoing ASD device closure using either 3D derived ASD area or ASD circumference |
---|