Cargando…
Efficient Reuse of Natural Language Processing Models for Phenotype-Mention Identification in Free-text Electronic Medical Records: A Phenotype Embedding Approach
BACKGROUND: Much effort has been put into the use of automated approaches, such as natural language processing (NLP), to mine or extract data from free-text medical records in order to construct comprehensive patient profiles for delivering better health care. Reusing NLP models in new settings, how...
Autores principales: | Wu, Honghan, Hodgson, Karen, Dyson, Sue, Morley, Katherine I, Ibrahim, Zina M, Iqbal, Ehtesham, Stewart, Robert, Dobson, Richard JB, Sudlow, Cathie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938594/ https://www.ncbi.nlm.nih.gov/pubmed/31845899 http://dx.doi.org/10.2196/14782 |
Ejemplares similares
-
nala: text mining natural language mutation mentions
por: Cejuela, Juan Miguel, et al.
Publicado: (2017) -
ADEPt, a semantically-enriched pipeline for extracting adverse drug events from free-text electronic health records
por: Iqbal, Ehtesham, et al.
Publicado: (2017) -
A validated natural language processing algorithm for brain imaging phenotypes from radiology reports in UK electronic health records
por: Wheater, Emily, et al.
Publicado: (2019) -
Knowledge graph prediction of unknown adverse drug reactions and validation in electronic health records
por: Bean, Daniel M., et al.
Publicado: (2017) -
Author Correction: Knowledge graph prediction of unknown adverse drug reactions and validation in electronic health records
por: Bean, Daniel M., et al.
Publicado: (2018)