Cargando…
ForestQC: Quality control on genetic variants from next-generation sequencing data using random forest
Next-generation sequencing technology (NGS) enables the discovery of nearly all genetic variants present in a genome. A subset of these variants, however, may have poor sequencing quality due to limitations in NGS or variant callers. In genetic studies that analyze a large number of sequenced indivi...
Autores principales: | Li, Jiajin, Jew, Brandon, Zhan, Lingyu, Hwang, Sungoo, Coppola, Giovanni, Freimer, Nelson B., Sul, Jae Hoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938691/ https://www.ncbi.nlm.nih.gov/pubmed/31851693 http://dx.doi.org/10.1371/journal.pcbi.1007556 |
Ejemplares similares
-
Rare variants in the endocytic pathway are associated with Alzheimer’s disease, its related phenotypes, and functional consequences
por: Zhan, Lingyu, et al.
Publicado: (2021) -
An efficient linear mixed model framework for meta-analytic association studies across multiple contexts
por: Jew, Brandon, et al.
Publicado: (2016) -
NGS QC Toolkit: A Toolkit for Quality Control of Next Generation Sequencing Data
por: Patel, Ravi K., et al.
Publicado: (2012) -
QC-Chain: Fast and Holistic Quality Control Method for Next-Generation Sequencing Data
por: Zhou, Qian, et al.
Publicado: (2013) -
Runoff and erosion generation by simulated rainfall in a Mediterranean forest with forest management
por: Úbeda, Xavier, et al.
Publicado: (2019)