Cargando…
“Effect of valerenic acid on neuroinflammation in a MPTP-induced mouse model of Parkinson’s disease”
Parkinson´s disease is the most important neuromotor pathology due to the prominent loss of dopaminergic neurons in the substantia nigra pars compacta. There is an inherent deficiency of dopamine in Parkinson´s disease, which is aggravated when neuroinflammatory processes are present. Several biomol...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938966/ https://www.ncbi.nlm.nih.gov/pubmed/31909290 http://dx.doi.org/10.1016/j.ibror.2019.12.002 |
_version_ | 1783484140734119936 |
---|---|
author | Rodríguez-Cruz, Alfredo Romo-Mancillas, Antonio Mendiola-Precoma, Jesus Escobar-Cabrera, Jesica Esther García-Alcocer, Guadalupe Berumen, Laura Cristina |
author_facet | Rodríguez-Cruz, Alfredo Romo-Mancillas, Antonio Mendiola-Precoma, Jesus Escobar-Cabrera, Jesica Esther García-Alcocer, Guadalupe Berumen, Laura Cristina |
author_sort | Rodríguez-Cruz, Alfredo |
collection | PubMed |
description | Parkinson´s disease is the most important neuromotor pathology due to the prominent loss of dopaminergic neurons in the substantia nigra pars compacta. There is an inherent deficiency of dopamine in Parkinson´s disease, which is aggravated when neuroinflammatory processes are present. Several biomolecules are interesting candidates for the regulation of inflammation and possible neuroprotection, such as valerenic acid, one of the main components of Valeriana officinalis. A 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP)-induced mouse model of Parkinson's disease was developed to evaluate the motor effects of valerenic acid. The evaluation was carried out with four tests (an invert screen test for muscle strength, cross beam test, open field mobility test and lifting on hind legs test). Subsequently, the neuroinflammatory process was evaluated through ELISA of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α and IFN-γ). The decreases in the inflammatory and neurodegenerative processes were evaluated by Western blot and immunohistochemistry analyses of the tissues, which included an evaluation of the tyrosine hydroxylase and GFAP proteins. Finally, the predicted mechanism of action of valerenic acid was supported by molecular docking calculations with the 5-HT(5A) receptor. The results indicate that the use of valerenic acid as a co-treatment decreases the neuroinflammation in Parkinson's disease induced by MPTP and provides evidence of a decrease in the evaluated pro-inflammatory cytokines and in the amount of GFAP in the mesencephalic area. Valerenic acid prevents neuroinflammation in a Parkinson's disease mouse model, which might reflect the neuroprotection of dopaminergic neurons with the recovery of motor ability. |
format | Online Article Text |
id | pubmed-6938966 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-69389662020-01-06 “Effect of valerenic acid on neuroinflammation in a MPTP-induced mouse model of Parkinson’s disease” Rodríguez-Cruz, Alfredo Romo-Mancillas, Antonio Mendiola-Precoma, Jesus Escobar-Cabrera, Jesica Esther García-Alcocer, Guadalupe Berumen, Laura Cristina IBRO Rep Article Parkinson´s disease is the most important neuromotor pathology due to the prominent loss of dopaminergic neurons in the substantia nigra pars compacta. There is an inherent deficiency of dopamine in Parkinson´s disease, which is aggravated when neuroinflammatory processes are present. Several biomolecules are interesting candidates for the regulation of inflammation and possible neuroprotection, such as valerenic acid, one of the main components of Valeriana officinalis. A 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP)-induced mouse model of Parkinson's disease was developed to evaluate the motor effects of valerenic acid. The evaluation was carried out with four tests (an invert screen test for muscle strength, cross beam test, open field mobility test and lifting on hind legs test). Subsequently, the neuroinflammatory process was evaluated through ELISA of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α and IFN-γ). The decreases in the inflammatory and neurodegenerative processes were evaluated by Western blot and immunohistochemistry analyses of the tissues, which included an evaluation of the tyrosine hydroxylase and GFAP proteins. Finally, the predicted mechanism of action of valerenic acid was supported by molecular docking calculations with the 5-HT(5A) receptor. The results indicate that the use of valerenic acid as a co-treatment decreases the neuroinflammation in Parkinson's disease induced by MPTP and provides evidence of a decrease in the evaluated pro-inflammatory cytokines and in the amount of GFAP in the mesencephalic area. Valerenic acid prevents neuroinflammation in a Parkinson's disease mouse model, which might reflect the neuroprotection of dopaminergic neurons with the recovery of motor ability. Elsevier 2019-12-17 /pmc/articles/PMC6938966/ /pubmed/31909290 http://dx.doi.org/10.1016/j.ibror.2019.12.002 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Rodríguez-Cruz, Alfredo Romo-Mancillas, Antonio Mendiola-Precoma, Jesus Escobar-Cabrera, Jesica Esther García-Alcocer, Guadalupe Berumen, Laura Cristina “Effect of valerenic acid on neuroinflammation in a MPTP-induced mouse model of Parkinson’s disease” |
title | “Effect of valerenic acid on neuroinflammation in a MPTP-induced mouse model of Parkinson’s disease” |
title_full | “Effect of valerenic acid on neuroinflammation in a MPTP-induced mouse model of Parkinson’s disease” |
title_fullStr | “Effect of valerenic acid on neuroinflammation in a MPTP-induced mouse model of Parkinson’s disease” |
title_full_unstemmed | “Effect of valerenic acid on neuroinflammation in a MPTP-induced mouse model of Parkinson’s disease” |
title_short | “Effect of valerenic acid on neuroinflammation in a MPTP-induced mouse model of Parkinson’s disease” |
title_sort | “effect of valerenic acid on neuroinflammation in a mptp-induced mouse model of parkinson’s disease” |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938966/ https://www.ncbi.nlm.nih.gov/pubmed/31909290 http://dx.doi.org/10.1016/j.ibror.2019.12.002 |
work_keys_str_mv | AT rodriguezcruzalfredo effectofvalerenicacidonneuroinflammationinamptpinducedmousemodelofparkinsonsdisease AT romomancillasantonio effectofvalerenicacidonneuroinflammationinamptpinducedmousemodelofparkinsonsdisease AT mendiolaprecomajesus effectofvalerenicacidonneuroinflammationinamptpinducedmousemodelofparkinsonsdisease AT escobarcabrerajesicaesther effectofvalerenicacidonneuroinflammationinamptpinducedmousemodelofparkinsonsdisease AT garciaalcocerguadalupe effectofvalerenicacidonneuroinflammationinamptpinducedmousemodelofparkinsonsdisease AT berumenlauracristina effectofvalerenicacidonneuroinflammationinamptpinducedmousemodelofparkinsonsdisease |