Cargando…

Task-related functional magnetic resonance imaging activations in patients with acute and subacute mild traumatic brain injury: A coordinate-based meta-analysis

Task-based functional magnetic resonance imaging (fMRI) has been used to examine neuroanatomical and functional changes following mild traumatic brain injury (mTBI). Prior studies have lacked consistency in identifying common regions of altered neural activity during cognitive tasks. This may be par...

Descripción completa

Detalles Bibliográficos
Autores principales: Cook, Michael J., Gardner, Andrew J., Wojtowicz, Magdalena, Williams, W. Huw, Iverson, Grant L., Stanwell, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939096/
https://www.ncbi.nlm.nih.gov/pubmed/31891819
http://dx.doi.org/10.1016/j.nicl.2019.102129
Descripción
Sumario:Task-based functional magnetic resonance imaging (fMRI) has been used to examine neuroanatomical and functional changes following mild traumatic brain injury (mTBI). Prior studies have lacked consistency in identifying common regions of altered neural activity during cognitive tasks. This may be partly due to differences in task paradigm, patient heterogeneity, and methods of fMRI analysis. We conducted a meta-analysis using an activation likelihood estimation (ALE) method to identify regions of differential brain activation in patients with mTBI compared to healthy controls. We included experiments that performed scans from acute to subacute time points post-injury. The seven included studies recruited a total sample of 174 patients with mTBIs and 139 control participants. The results of our coordinate based meta-analysis revealed a single cluster of reduced activation within the right middle frontal gyrus (MFG) that differentiated mTBI from healthy controls. We conclude that the cognitive impairments in memory and attention typically reported in mTBI patients may be associated with a deficit in the right MFG, which impacts the recruitment of neural networks important for attentional control.