Cargando…
A guide to machine learning for bacterial host attribution using genome sequence data
With the ever-expanding number of available sequences from bacterial genomes, and the expectation that this data type will be the primary one generated from both diagnostic and research laboratories for the foreseeable future, then there is both an opportunity and a need to evaluate how effectively...
Autores principales: | Lupolova, Nadejda, Lycett, Samantha J., Gally, David L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Microbiology Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939162/ https://www.ncbi.nlm.nih.gov/pubmed/31778355 http://dx.doi.org/10.1099/mgen.0.000317 |
Ejemplares similares
-
Patchy promiscuity: machine learning applied to predict the host specificity of Salmonella enterica and Escherichia coli
por: Lupolova, Nadejda, et al.
Publicado: (2017) -
Erratum: Patchy promiscuity: machine learning applied to predict the host specificity of Salmonella enterica and Escherichia coli
por: Lupolova, Nadejda, et al.
Publicado: (2018) -
Convergence of plasmid architectures drives emergence of multi-drug resistance in a clonally diverse Escherichia coli population from a veterinary clinical care setting
por: Wagner, Sam, et al.
Publicado: (2017) -
The advantage of intergenic regions as genomic features for machine-learning-based host attribution of Salmonella Typhimurium from the USA
por: Chalka, Antonia, et al.
Publicado: (2023) -
Whole Genome Sequence Analysis Reveals Lower Diversity and Frequency of Acquired Antimicrobial Resistance (AMR) Genes in E. coli From Dairy Herds Compared With Human Isolates From the Same Region of Central Zambia
por: Mainda, Geoffrey, et al.
Publicado: (2019)