Cargando…
Whole-Slide Image Focus Quality: Automatic Assessment and Impact on AI Cancer Detection
BACKGROUND: Digital pathology enables remote access or consults and powerful image analysis algorithms. However, the slide digitization process can create artifacts such as out-of-focus (OOF). OOF is often only detected on careful review, potentially causing rescanning, and workflow delays. Although...
Autores principales: | Kohlberger, Timo, Liu, Yun, Moran, Melissa, Chen, Po-Hsuan Cameron, Brown, Trissia, Hipp, Jason D., Mermel, Craig H., Stumpe, Martin C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939343/ https://www.ncbi.nlm.nih.gov/pubmed/31921487 http://dx.doi.org/10.4103/jpi.jpi_11_19 |
Ejemplares similares
-
Reply: ‘The importance of study design in the application of artificial intelligence methods in medicine’
por: Nagpal, Kunal, et al.
Publicado: (2019) -
An automatic entropy method to efficiently mask histology whole-slide images
por: Song, Yipei, et al.
Publicado: (2023) -
Interpretable survival prediction for colorectal cancer using deep learning
por: Wulczyn, Ellery, et al.
Publicado: (2021) -
Predicting prostate cancer specific-mortality with artificial intelligence-based Gleason grading
por: Wulczyn, Ellery, et al.
Publicado: (2021) -
Multicenter automatic detection of invasive carcinoma on breast whole slide images
por: Peyret, Rémy, et al.
Publicado: (2023)