Cargando…

An artificial spiking afferent nerve based on Mott memristors for neurorobotics

Neuromorphic computing based on spikes offers great potential in highly efficient computing paradigms. Recently, several hardware implementations of spiking neural networks based on traditional complementary metal-oxide semiconductor technology or memristors have been developed. However, an interfac...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xumeng, Zhuo, Ye, Luo, Qing, Wu, Zuheng, Midya, Rivu, Wang, Zhongrui, Song, Wenhao, Wang, Rui, Upadhyay, Navnidhi K., Fang, Yilin, Kiani, Fatemeh, Rao, Mingyi, Yang, Yang, Xia, Qiangfei, Liu, Qi, Liu, Ming, Yang, J. Joshua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6940364/
https://www.ncbi.nlm.nih.gov/pubmed/31896758
http://dx.doi.org/10.1038/s41467-019-13827-6
_version_ 1783484339427737600
author Zhang, Xumeng
Zhuo, Ye
Luo, Qing
Wu, Zuheng
Midya, Rivu
Wang, Zhongrui
Song, Wenhao
Wang, Rui
Upadhyay, Navnidhi K.
Fang, Yilin
Kiani, Fatemeh
Rao, Mingyi
Yang, Yang
Xia, Qiangfei
Liu, Qi
Liu, Ming
Yang, J. Joshua
author_facet Zhang, Xumeng
Zhuo, Ye
Luo, Qing
Wu, Zuheng
Midya, Rivu
Wang, Zhongrui
Song, Wenhao
Wang, Rui
Upadhyay, Navnidhi K.
Fang, Yilin
Kiani, Fatemeh
Rao, Mingyi
Yang, Yang
Xia, Qiangfei
Liu, Qi
Liu, Ming
Yang, J. Joshua
author_sort Zhang, Xumeng
collection PubMed
description Neuromorphic computing based on spikes offers great potential in highly efficient computing paradigms. Recently, several hardware implementations of spiking neural networks based on traditional complementary metal-oxide semiconductor technology or memristors have been developed. However, an interface (called an afferent nerve in biology) with the environment, which converts the analog signal from sensors into spikes in spiking neural networks, is yet to be demonstrated. Here we propose and experimentally demonstrate an artificial spiking afferent nerve based on highly reliable NbO(x) Mott memristors for the first time. The spiking frequency of the afferent nerve is proportional to the stimuli intensity before encountering noxiously high stimuli, and then starts to reduce the spiking frequency at an inflection point. Using this afferent nerve, we further build a power-free spiking mechanoreceptor system with a passive piezoelectric device as the tactile sensor. The experimental results indicate that our afferent nerve is promising for constructing self-aware neurorobotics in the future.
format Online
Article
Text
id pubmed-6940364
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-69403642020-01-06 An artificial spiking afferent nerve based on Mott memristors for neurorobotics Zhang, Xumeng Zhuo, Ye Luo, Qing Wu, Zuheng Midya, Rivu Wang, Zhongrui Song, Wenhao Wang, Rui Upadhyay, Navnidhi K. Fang, Yilin Kiani, Fatemeh Rao, Mingyi Yang, Yang Xia, Qiangfei Liu, Qi Liu, Ming Yang, J. Joshua Nat Commun Article Neuromorphic computing based on spikes offers great potential in highly efficient computing paradigms. Recently, several hardware implementations of spiking neural networks based on traditional complementary metal-oxide semiconductor technology or memristors have been developed. However, an interface (called an afferent nerve in biology) with the environment, which converts the analog signal from sensors into spikes in spiking neural networks, is yet to be demonstrated. Here we propose and experimentally demonstrate an artificial spiking afferent nerve based on highly reliable NbO(x) Mott memristors for the first time. The spiking frequency of the afferent nerve is proportional to the stimuli intensity before encountering noxiously high stimuli, and then starts to reduce the spiking frequency at an inflection point. Using this afferent nerve, we further build a power-free spiking mechanoreceptor system with a passive piezoelectric device as the tactile sensor. The experimental results indicate that our afferent nerve is promising for constructing self-aware neurorobotics in the future. Nature Publishing Group UK 2020-01-02 /pmc/articles/PMC6940364/ /pubmed/31896758 http://dx.doi.org/10.1038/s41467-019-13827-6 Text en © This is a U.S Government work and not under copyright protection in the U.S; foreign copyright protection may apply 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Zhang, Xumeng
Zhuo, Ye
Luo, Qing
Wu, Zuheng
Midya, Rivu
Wang, Zhongrui
Song, Wenhao
Wang, Rui
Upadhyay, Navnidhi K.
Fang, Yilin
Kiani, Fatemeh
Rao, Mingyi
Yang, Yang
Xia, Qiangfei
Liu, Qi
Liu, Ming
Yang, J. Joshua
An artificial spiking afferent nerve based on Mott memristors for neurorobotics
title An artificial spiking afferent nerve based on Mott memristors for neurorobotics
title_full An artificial spiking afferent nerve based on Mott memristors for neurorobotics
title_fullStr An artificial spiking afferent nerve based on Mott memristors for neurorobotics
title_full_unstemmed An artificial spiking afferent nerve based on Mott memristors for neurorobotics
title_short An artificial spiking afferent nerve based on Mott memristors for neurorobotics
title_sort artificial spiking afferent nerve based on mott memristors for neurorobotics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6940364/
https://www.ncbi.nlm.nih.gov/pubmed/31896758
http://dx.doi.org/10.1038/s41467-019-13827-6
work_keys_str_mv AT zhangxumeng anartificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT zhuoye anartificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT luoqing anartificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT wuzuheng anartificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT midyarivu anartificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT wangzhongrui anartificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT songwenhao anartificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT wangrui anartificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT upadhyaynavnidhik anartificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT fangyilin anartificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT kianifatemeh anartificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT raomingyi anartificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT yangyang anartificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT xiaqiangfei anartificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT liuqi anartificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT liuming anartificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT yangjjoshua anartificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT zhangxumeng artificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT zhuoye artificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT luoqing artificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT wuzuheng artificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT midyarivu artificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT wangzhongrui artificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT songwenhao artificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT wangrui artificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT upadhyaynavnidhik artificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT fangyilin artificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT kianifatemeh artificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT raomingyi artificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT yangyang artificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT xiaqiangfei artificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT liuqi artificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT liuming artificialspikingafferentnervebasedonmottmemristorsforneurorobotics
AT yangjjoshua artificialspikingafferentnervebasedonmottmemristorsforneurorobotics