Cargando…
Feasibility of fully automated classification of whole slide images based on deep learning
Although microscopic analysis of tissue slides has been the basis for disease diagnosis for decades, intra- and inter-observer variabilities remain issues to be resolved. The recent introduction of digital scanners has allowed for using deep learning in the analysis of tissue images because many who...
Autores principales: | Cho, Kyung-Ok, Lee, Sung Hak, Jang, Hyun-Jong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Physiological Society and The Korean Society of Pharmacology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6940498/ https://www.ncbi.nlm.nih.gov/pubmed/31908578 http://dx.doi.org/10.4196/kjpp.2020.24.1.89 |
Ejemplares similares
-
Deep Learning-Based Classification of Uterine Cervical and Endometrial Cancer Subtypes from Whole-Slide Histopathology Images
por: Song, JaeYen, et al.
Publicado: (2022) -
Deep Learning for Automatic Subclassification of Gastric Carcinoma Using Whole-Slide Histopathology Images
por: Jang, Hyun-Jong, et al.
Publicado: (2021) -
A deep learning framework for automated classification of histopathological kidney whole-slide images
por: Abdeltawab, Hisham A., et al.
Publicado: (2022) -
Deep Learning for Classification of Colorectal Polyps on Whole-slide Images
por: Korbar, Bruno, et al.
Publicado: (2017) -
Prediction of genetic alterations from gastric cancer histopathology images using a fully automated deep learning approach
por: Jang, Hyun-Jong, et al.
Publicado: (2021)