Cargando…

The vasculature in HFpEF vs HFrEF: differences in contractile protein expression produce distinct phenotypes

Both heart failure with reduced (HFrEF) and preserved (HFpEF) ejection fraction are associated with abnormalities of the vasculature, including a resting vasoconstriction and a decrease in sensitivity to nitric oxide (NO) mediated vasodilation. Vascular tone is controlled by the expression and activ...

Descripción completa

Detalles Bibliográficos
Autores principales: Lyle, Melissa A., Alabdaljabar, Mohamad S., Han, Young Soo, Brozovich, Frank V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6940630/
https://www.ncbi.nlm.nih.gov/pubmed/31909283
http://dx.doi.org/10.1016/j.heliyon.2019.e03129
Descripción
Sumario:Both heart failure with reduced (HFrEF) and preserved (HFpEF) ejection fraction are associated with abnormalities of the vasculature, including a resting vasoconstriction and a decrease in sensitivity to nitric oxide (NO) mediated vasodilation. Vascular tone is controlled by the expression and activation of both smooth muscle (SM) and nonmuscle (NM) myosin, and NO mediated vasodilation is regulated by the expression of the leucine zipper positive (LZ+) isoform of the myosin targeting subunit (MYPT1) of myosin light chain phosphatase (MLCP). This study was designed to determine the expression of these contractile proteins in humans with HFrEF and HFpEF vs normal controls. We isolated tertiary mesenteric vessels from remnant biospecimens of patients undergoing partial or total colectomy at Mayo Clinic Rochester from August 2017 to December 2018, and examined the expression of MYPT1 and the LZ + MYPT1 isoform with immunoblots, while 2D SDS-PAGE was used to resolve the phosphorylated and nonphosphorylated regulatory light chains of NM and SM myosin. Our data show that NM myosin expression, as a percentage of total myosin, was 12 ± 3% (controls, n = 6), 7 ± 5% (HFpEF, n = 4) and 37 ± 18% (HFrEF, n = 5, p < 0.05). Total MYPT1 expression was significantly reduced (p < 0.05) in both HFpEF (70 ± 11%) and HFrEF (48 ± 6%); and in HFrEF, LZ + MYPT1 was also depressed (62 ± 19%, <0.05). These results demonstrate that HFrEF and HFpEF are distinct vascular entities, and the changes in protein expression contribute to the vascular abnormalities associated with these diseases. Further in HFpEF, the decrease in MYPT1 would explain why pharmacologic therapies that are designed to activate the NO/cGMP/PKG signaling pathway do not produce a clinical benefit.