Cargando…
The Membrane Interactions of Nano-Silica and Its Potential Application in Animal Nutrition
SIMPLE SUMMARY: Silicon dioxide nanostructures, due to good biocompatibility, low toxicity and high synthetic availability, are promising materials for various biological and industrial applications. Interest in using silicon dioxide nanostructures arises not only from their special interactions wit...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6940791/ https://www.ncbi.nlm.nih.gov/pubmed/31795229 http://dx.doi.org/10.3390/ani9121041 |
Sumario: | SIMPLE SUMMARY: Silicon dioxide nanostructures, due to good biocompatibility, low toxicity and high synthetic availability, are promising materials for various biological and industrial applications. Interest in using silicon dioxide nanostructures arises not only from their special interactions with cell membranes, but also from an ease in manipulating their particle size, shape and porosity, allowing one to make a material with the desired physicochemical properties. Despite that, there is still little known about the possible use of silicon dioxide and other nanostructures in animal nutrition. The aim of the present paper was to describe the properties of silica nanostructures, demonstrating potential applications and achievable benefits of using nanostructures as a feed additive. Based on the literature, it seems that diet supplementation with nanoparticles leads to improved performance and immunity in animals, which might be, at least partially, related to changes in the composition of gut microbiota. These unique features make nanoparticles interesting candidates as feed additives used in animal nutrition. ABSTRACT: Nanoparticles are increasingly popular in numerous fields including electronics, optics and medicine (vaccines, tissue engineering, microsurgery, genomics and cancer therapies). The most widely used nanoparticles in biomedical applications are those designed by man. Scientists have obtained many types of silica nanoparticles with defined shape and chemical composition, but different properties and applications. Nanoparticles include particles with at least one dimension ranging from 1–100 nm. Silica nanoparticles (Sn), reaching values from several dozen to several hundred m(2)/g, have unique physicochemical properties due to their porous structure and well-developed specific surface. Currently, the use of Sn in animal nutrition, with a focus on gastrointestinal tract function, is of great interest. |
---|