Cargando…

Effect of Curcumin on Growth Performance, Inflammation, Insulin level, and Lipid Metabolism in Weaned Piglets with IUGR

SIMPLE SUMMARY: Intrauterine growth retardation (IUGR) has adverse influences on the growth performance and body metabolism of animals. Curcumin, a naturally occurring phenolic compound, has been proven to improve the growth of pigs. However, the studies related to the role of curcumin in treating I...

Descripción completa

Detalles Bibliográficos
Autores principales: Niu, Yu, He, Jintian, Zhao, Yongwei, Shen, Mingming, Zhang, Lili, Zhong, Xiang, Wang, Chao, Wang, Tian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6940831/
https://www.ncbi.nlm.nih.gov/pubmed/31818040
http://dx.doi.org/10.3390/ani9121098
Descripción
Sumario:SIMPLE SUMMARY: Intrauterine growth retardation (IUGR) has adverse influences on the growth performance and body metabolism of animals. Curcumin, a naturally occurring phenolic compound, has been proven to improve the growth of pigs. However, the studies related to the role of curcumin in treating IUGR piglets are not clear. Therefore, the purpose of our study was to investigate the role of curcumin on the growth, secretion of serum cytokines and hepatic metabolism of IUGR piglets. We found that IUGR piglets are accompanied by impaired growth, inflammation, and insulin resistance, as well as increased hepatic lipid concentrations. Curcumin supplementation improved growth and reduced hepatic inflammatory levels, thereby attenuating insulin resistance and decreasing the hepatic lipid concentration of IUGR piglets. ABSTRACT: The possible causes of intrauterine growth retardation (IUGR) might stem from placental insufficiency, maternal malnutrition, inflammation in utero, and other causes. IUGR has had an adverse influence on human health and animal production. Forty weaned piglets with normal birth weights (NBWs) or IUGR were randomly divided into four treatments groups: NBW, NC (NBW with curcumin supplementation), IUGR, and IC (IUGR with curcumin supplementation) from 26 to 50 d. Levels of cytokines, glucose, and lipid metabolism were evaluated. IUGR piglets showed slow growth during the experiment. Piglets with IUGR showed higher levels of serum pro-inflammatory cytokines, insulin resistance, and hepatic lipid accumulation. Curcumin supplementation reduced the production of serum pro-inflammatory cytokines, attenuated insulin resistance and hepatic triglyceride, and enhanced the hepatic glycogen concentrations and lipase activities of IUGR piglets. The hepatic mRNA expressions of the insulin-signaling pathway and lipogenic pathway were influenced by IUGR and were positively attenuated by diets supplemented with curcumin. In conclusion, IUGR caused slow growth, insulin resistance, and increased hepatic lipid levels. Diets supplemented with curcumin improved growth, attenuated insulin resistance, and reduced lipid levels in the liver by regulating the hepatic gene expressions of the related signaling pathway in IUGR piglets.