Cargando…
Quantification of Airborne Resistant Organisms With Temporal and Spatial Diversity in Bangladesh: Protocol for a Cross-Sectional Study
BACKGROUND: Antimicrobial resistance is a widespread, alarming issue in global health and a significant contributor to human death and illness, especially in low and middle-income countries like Bangladesh. Despite extensive work conducted in environmental settings, there is a scarcity of knowledge...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6940864/ https://www.ncbi.nlm.nih.gov/pubmed/31855188 http://dx.doi.org/10.2196/14574 |
_version_ | 1783484427215568896 |
---|---|
author | Asaduzzaman, Muhammad Hossain, Muhammed Iqbal Saha, Sumita Rani Islam, Md Rayhanul Ahmed, Niyaz Islam, Mohammad Aminul |
author_facet | Asaduzzaman, Muhammad Hossain, Muhammed Iqbal Saha, Sumita Rani Islam, Md Rayhanul Ahmed, Niyaz Islam, Mohammad Aminul |
author_sort | Asaduzzaman, Muhammad |
collection | PubMed |
description | BACKGROUND: Antimicrobial resistance is a widespread, alarming issue in global health and a significant contributor to human death and illness, especially in low and middle-income countries like Bangladesh. Despite extensive work conducted in environmental settings, there is a scarcity of knowledge about the presence of resistant organisms in the air. OBJECTIVE: The objective of this protocol is to quantify and characterize the airborne resistomes in Bangladesh, which will be a guide to identify high-risk environments for multidrug-resistant pathogens with their spatiotemporal diversity. METHODS: This is a cross-sectional study with an environmental, systematic, and grid sampling strategy focused on collecting air samples from different outdoor environments during the dry and wet seasons. The four environmental compartments are the frequent human exposure sites in both urban and rural settings: urban residential areas (n=20), live bird markets (n=20), rural households (n=20), and poultry farms (n=20). We obtained air samples from 80 locations in two seasons by using an active microbial air sampler. From each location, five air samples were collected in different media to yield the total bacterial count of 3rd generation cephalosporin (3GC) resistant Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, vancomycin-resistant Enterococci and methicillin-resistant Staphylococcus aureus. RESULTS: The study started in January 2018, and the collection of air samples was completed in November 2018. We have received 800 air samples from 80 study locations in both dry and wet seasons. Currently, the laboratory analysis is ongoing, and we expect to receive the preliminary results by October 2019. We will publish the complete result as soon as we clean and analyze the data and draft the manuscript. CONCLUSIONS: The existence of resistant bacteria in the air like those producing extended-spectrum beta-lactamases, carbapenem-resistant Enterobacteriaceae, vancomycin-resistant Enterococci, and methicillin-resistant Staphylococcus aureus will justify our hypothesis that the outdoor environment (air) in Bangladesh acts as a reservoir for bacteria that carry genes conferring resistance to antibiotics. To our knowledge, this is the first study to explore the presence of superbugs in the air in commonly exposed areas in Bangladesh. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/14574 |
format | Online Article Text |
id | pubmed-6940864 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | JMIR Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-69408642020-01-13 Quantification of Airborne Resistant Organisms With Temporal and Spatial Diversity in Bangladesh: Protocol for a Cross-Sectional Study Asaduzzaman, Muhammad Hossain, Muhammed Iqbal Saha, Sumita Rani Islam, Md Rayhanul Ahmed, Niyaz Islam, Mohammad Aminul JMIR Res Protoc Protocol BACKGROUND: Antimicrobial resistance is a widespread, alarming issue in global health and a significant contributor to human death and illness, especially in low and middle-income countries like Bangladesh. Despite extensive work conducted in environmental settings, there is a scarcity of knowledge about the presence of resistant organisms in the air. OBJECTIVE: The objective of this protocol is to quantify and characterize the airborne resistomes in Bangladesh, which will be a guide to identify high-risk environments for multidrug-resistant pathogens with their spatiotemporal diversity. METHODS: This is a cross-sectional study with an environmental, systematic, and grid sampling strategy focused on collecting air samples from different outdoor environments during the dry and wet seasons. The four environmental compartments are the frequent human exposure sites in both urban and rural settings: urban residential areas (n=20), live bird markets (n=20), rural households (n=20), and poultry farms (n=20). We obtained air samples from 80 locations in two seasons by using an active microbial air sampler. From each location, five air samples were collected in different media to yield the total bacterial count of 3rd generation cephalosporin (3GC) resistant Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, vancomycin-resistant Enterococci and methicillin-resistant Staphylococcus aureus. RESULTS: The study started in January 2018, and the collection of air samples was completed in November 2018. We have received 800 air samples from 80 study locations in both dry and wet seasons. Currently, the laboratory analysis is ongoing, and we expect to receive the preliminary results by October 2019. We will publish the complete result as soon as we clean and analyze the data and draft the manuscript. CONCLUSIONS: The existence of resistant bacteria in the air like those producing extended-spectrum beta-lactamases, carbapenem-resistant Enterobacteriaceae, vancomycin-resistant Enterococci, and methicillin-resistant Staphylococcus aureus will justify our hypothesis that the outdoor environment (air) in Bangladesh acts as a reservoir for bacteria that carry genes conferring resistance to antibiotics. To our knowledge, this is the first study to explore the presence of superbugs in the air in commonly exposed areas in Bangladesh. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/14574 JMIR Publications 2019-12-19 /pmc/articles/PMC6940864/ /pubmed/31855188 http://dx.doi.org/10.2196/14574 Text en ©Muhammad Asaduzzaman, Muhammed Iqbal Hossain, Sumita Rani Saha, Md Rayhanul Islam, Niyaz Ahmed, Mohammad Aminul Islam. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 19.12.2019. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Research Protocols, is properly cited. The complete bibliographic information, a link to the original publication on http://www.researchprotocols.org, as well as this copyright and license information must be included. |
spellingShingle | Protocol Asaduzzaman, Muhammad Hossain, Muhammed Iqbal Saha, Sumita Rani Islam, Md Rayhanul Ahmed, Niyaz Islam, Mohammad Aminul Quantification of Airborne Resistant Organisms With Temporal and Spatial Diversity in Bangladesh: Protocol for a Cross-Sectional Study |
title | Quantification of Airborne Resistant Organisms With Temporal and Spatial Diversity in Bangladesh: Protocol for a Cross-Sectional Study |
title_full | Quantification of Airborne Resistant Organisms With Temporal and Spatial Diversity in Bangladesh: Protocol for a Cross-Sectional Study |
title_fullStr | Quantification of Airborne Resistant Organisms With Temporal and Spatial Diversity in Bangladesh: Protocol for a Cross-Sectional Study |
title_full_unstemmed | Quantification of Airborne Resistant Organisms With Temporal and Spatial Diversity in Bangladesh: Protocol for a Cross-Sectional Study |
title_short | Quantification of Airborne Resistant Organisms With Temporal and Spatial Diversity in Bangladesh: Protocol for a Cross-Sectional Study |
title_sort | quantification of airborne resistant organisms with temporal and spatial diversity in bangladesh: protocol for a cross-sectional study |
topic | Protocol |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6940864/ https://www.ncbi.nlm.nih.gov/pubmed/31855188 http://dx.doi.org/10.2196/14574 |
work_keys_str_mv | AT asaduzzamanmuhammad quantificationofairborneresistantorganismswithtemporalandspatialdiversityinbangladeshprotocolforacrosssectionalstudy AT hossainmuhammediqbal quantificationofairborneresistantorganismswithtemporalandspatialdiversityinbangladeshprotocolforacrosssectionalstudy AT sahasumitarani quantificationofairborneresistantorganismswithtemporalandspatialdiversityinbangladeshprotocolforacrosssectionalstudy AT islammdrayhanul quantificationofairborneresistantorganismswithtemporalandspatialdiversityinbangladeshprotocolforacrosssectionalstudy AT ahmedniyaz quantificationofairborneresistantorganismswithtemporalandspatialdiversityinbangladeshprotocolforacrosssectionalstudy AT islammohammadaminul quantificationofairborneresistantorganismswithtemporalandspatialdiversityinbangladeshprotocolforacrosssectionalstudy |