Cargando…

Unraveling the Adipose Tissue Proteome of Transition Cows through Severe Negative Energy Balance

SIMPLE SUMMARY: This work described the analysis of differential protein expression of subcutaneous adipose tissue of cows that went under negative energy balance during peripartum. In particular, to the best of our knowledge, it represented an original proteomics study that was able to discriminate...

Descripción completa

Detalles Bibliográficos
Autores principales: Piras, Cristian, Morittu, Valeria Maria, Spina, Anna Antonella, Soggiu, Alessio, Greco, Viviana, Ramé, Christelle, Briant, Eric, Mellouk, Namya, Tilocca, Bruno, Bonizzi, Luigi, Roncada, Paola, Dupont, Joëlle
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6940989/
https://www.ncbi.nlm.nih.gov/pubmed/31766506
http://dx.doi.org/10.3390/ani9121013
_version_ 1783484456336621568
author Piras, Cristian
Morittu, Valeria Maria
Spina, Anna Antonella
Soggiu, Alessio
Greco, Viviana
Ramé, Christelle
Briant, Eric
Mellouk, Namya
Tilocca, Bruno
Bonizzi, Luigi
Roncada, Paola
Dupont, Joëlle
author_facet Piras, Cristian
Morittu, Valeria Maria
Spina, Anna Antonella
Soggiu, Alessio
Greco, Viviana
Ramé, Christelle
Briant, Eric
Mellouk, Namya
Tilocca, Bruno
Bonizzi, Luigi
Roncada, Paola
Dupont, Joëlle
author_sort Piras, Cristian
collection PubMed
description SIMPLE SUMMARY: This work described the analysis of differential protein expression of subcutaneous adipose tissue of cows that went under negative energy balance during peripartum. In particular, to the best of our knowledge, it represented an original proteomics study that was able to discriminate cows in negative energy balance up to one month before calving. We believed that our findings would open new perspectives to improve animal welfare during peripartum. To know in advance, the metabolic status of cows would permit to correct the status with appropriate measures, like diet or management. ABSTRACT: Fat mobilization in high-yielding dairy cows during early lactation occurs to overcome negative energy balance (NEB), caused by insufficient feed intake and the concomitant increased nutritional requirements. For this reason, adipose tissue represents an essential organ for healthy and performant lactation. However, only a few data are known about adipose tissue proteome and its metabolic status during peripartum. The aim of this study was to analyze the differential proteomics profiles of subcutaneous adipose tissue belonging to cows with different NEB scores (low NEB and severe NEB). Both groups were analyzed at three different time points (one month before calving, one and sixteen weeks after calving) that were related to different levels and rates of adipose tissue mobilization. The dataset highlighted the differential expression of the same four key proteins (annexin A2, actin-related protein 10, glyceraldehyde-3-phosphate dehydrogenase, and fatty acid-binding protein) involved in lipid metabolism during all time points and of other 22 proteins typical of the other comparisons among remaining time points. The obtained dataset suggested that the individual variability in adipose tissue metabolism/mobilization/energy availability could be linked to the different outcomes in levels of energy balance and related physical complications among dairy cows during peripartum.
format Online
Article
Text
id pubmed-6940989
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-69409892020-01-09 Unraveling the Adipose Tissue Proteome of Transition Cows through Severe Negative Energy Balance Piras, Cristian Morittu, Valeria Maria Spina, Anna Antonella Soggiu, Alessio Greco, Viviana Ramé, Christelle Briant, Eric Mellouk, Namya Tilocca, Bruno Bonizzi, Luigi Roncada, Paola Dupont, Joëlle Animals (Basel) Article SIMPLE SUMMARY: This work described the analysis of differential protein expression of subcutaneous adipose tissue of cows that went under negative energy balance during peripartum. In particular, to the best of our knowledge, it represented an original proteomics study that was able to discriminate cows in negative energy balance up to one month before calving. We believed that our findings would open new perspectives to improve animal welfare during peripartum. To know in advance, the metabolic status of cows would permit to correct the status with appropriate measures, like diet or management. ABSTRACT: Fat mobilization in high-yielding dairy cows during early lactation occurs to overcome negative energy balance (NEB), caused by insufficient feed intake and the concomitant increased nutritional requirements. For this reason, adipose tissue represents an essential organ for healthy and performant lactation. However, only a few data are known about adipose tissue proteome and its metabolic status during peripartum. The aim of this study was to analyze the differential proteomics profiles of subcutaneous adipose tissue belonging to cows with different NEB scores (low NEB and severe NEB). Both groups were analyzed at three different time points (one month before calving, one and sixteen weeks after calving) that were related to different levels and rates of adipose tissue mobilization. The dataset highlighted the differential expression of the same four key proteins (annexin A2, actin-related protein 10, glyceraldehyde-3-phosphate dehydrogenase, and fatty acid-binding protein) involved in lipid metabolism during all time points and of other 22 proteins typical of the other comparisons among remaining time points. The obtained dataset suggested that the individual variability in adipose tissue metabolism/mobilization/energy availability could be linked to the different outcomes in levels of energy balance and related physical complications among dairy cows during peripartum. MDPI 2019-11-21 /pmc/articles/PMC6940989/ /pubmed/31766506 http://dx.doi.org/10.3390/ani9121013 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Piras, Cristian
Morittu, Valeria Maria
Spina, Anna Antonella
Soggiu, Alessio
Greco, Viviana
Ramé, Christelle
Briant, Eric
Mellouk, Namya
Tilocca, Bruno
Bonizzi, Luigi
Roncada, Paola
Dupont, Joëlle
Unraveling the Adipose Tissue Proteome of Transition Cows through Severe Negative Energy Balance
title Unraveling the Adipose Tissue Proteome of Transition Cows through Severe Negative Energy Balance
title_full Unraveling the Adipose Tissue Proteome of Transition Cows through Severe Negative Energy Balance
title_fullStr Unraveling the Adipose Tissue Proteome of Transition Cows through Severe Negative Energy Balance
title_full_unstemmed Unraveling the Adipose Tissue Proteome of Transition Cows through Severe Negative Energy Balance
title_short Unraveling the Adipose Tissue Proteome of Transition Cows through Severe Negative Energy Balance
title_sort unraveling the adipose tissue proteome of transition cows through severe negative energy balance
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6940989/
https://www.ncbi.nlm.nih.gov/pubmed/31766506
http://dx.doi.org/10.3390/ani9121013
work_keys_str_mv AT pirascristian unravelingtheadiposetissueproteomeoftransitioncowsthroughseverenegativeenergybalance
AT morittuvaleriamaria unravelingtheadiposetissueproteomeoftransitioncowsthroughseverenegativeenergybalance
AT spinaannaantonella unravelingtheadiposetissueproteomeoftransitioncowsthroughseverenegativeenergybalance
AT soggiualessio unravelingtheadiposetissueproteomeoftransitioncowsthroughseverenegativeenergybalance
AT grecoviviana unravelingtheadiposetissueproteomeoftransitioncowsthroughseverenegativeenergybalance
AT ramechristelle unravelingtheadiposetissueproteomeoftransitioncowsthroughseverenegativeenergybalance
AT brianteric unravelingtheadiposetissueproteomeoftransitioncowsthroughseverenegativeenergybalance
AT mellouknamya unravelingtheadiposetissueproteomeoftransitioncowsthroughseverenegativeenergybalance
AT tiloccabruno unravelingtheadiposetissueproteomeoftransitioncowsthroughseverenegativeenergybalance
AT bonizziluigi unravelingtheadiposetissueproteomeoftransitioncowsthroughseverenegativeenergybalance
AT roncadapaola unravelingtheadiposetissueproteomeoftransitioncowsthroughseverenegativeenergybalance
AT dupontjoelle unravelingtheadiposetissueproteomeoftransitioncowsthroughseverenegativeenergybalance