Cargando…

The Q-LAMP Method Represents a Valid and Rapid Alternative for the Detection of the BCR-ABL1 Rearrangement in Philadelphia-Positive Leukemias

Molecular detection of the BCR-ABL1 fusion transcripts is necessary for the genetic confirmation of a chronic myeloid leukemia diagnosis and for the risk classification of acute lymphoblastic leukemia. BCR-ABL1 mRNAs are usually identified using a conventional RT-PCR technique according to the BIOME...

Descripción completa

Detalles Bibliográficos
Autores principales: Stella, Stefania, Gottardi, Enrico Marco, Favout, Valeria, Barragan Gonzalez, Eva, Errichiello, Santa, Vitale, Silvia Rita, Fava, Carmen, Luciano, Luigia, Stagno, Fabio, Grimaldi, Francesco, Pironi, Lucrezia, Sargas Simarro, Claudia, Vigneri, Paolo, Izzo, Barbara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941015/
https://www.ncbi.nlm.nih.gov/pubmed/31817063
http://dx.doi.org/10.3390/ijms20246106
Descripción
Sumario:Molecular detection of the BCR-ABL1 fusion transcripts is necessary for the genetic confirmation of a chronic myeloid leukemia diagnosis and for the risk classification of acute lymphoblastic leukemia. BCR-ABL1 mRNAs are usually identified using a conventional RT-PCR technique according to the BIOMED-1 method. In this study, we evaluated 122 BCR-ABL1-positive samples with the Q-LAMP assay to establish if this technology may represent a valid alternative to the qualitative BIOMED-1 PCR technique usually employed for the detection and the discrimination of the common BCR-ABL1 transcripts (p190 and p210 isoforms). We found a 100% concordance rate between the two methods. Specifically, the p190- and p210-positive samples were amplified by Q-LAMP with a median threshold time (Tt) of 26.70 min (range: 24.45–31.80 min) and 20.26 min (range: 15.25-34.57 min), respectively. A median time of 19.63 was observed in samples displaying both (e13a2/e14a2) p210 isoforms. Moreover, the Q-LAMP assay allowed recognition of the BCR-ABL1 e13a2 and e14a2 isoforms (median Tts 18.48 for e13a2 vs. 26.08 min for e14a2; p < 0.001). Finally, 20 samples harboring rare BCR-ABL1 isoforms (e1a3, e13a3, e14a3, and e19a2) were correctly identified by the Q-LAMP assay. We conclude that the Q-LAMP assay may represent a faster and valid alternative to the qualitative BIOMED-1 RT-PCR for the diagnosis at BCR-ABL1-positive leukemias, especially when samples are analyzed in centers with restricted resources and/or limited technical expertise.