Cargando…
Molecular Modelling of Islet β-Cell Adaptation to Inflammation in Pregnancy and Gestational Diabetes Mellitus
Gestational diabetes mellitus (GDM), a metabolic disease that develops with the increase in insulin resistance during late pregnancy, is currently one of the most common complications affecting pregnancy. The polygenic nature of GDM, together with the interplay between different genetic variants wit...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941051/ https://www.ncbi.nlm.nih.gov/pubmed/31817798 http://dx.doi.org/10.3390/ijms20246171 |
_version_ | 1783484473382273024 |
---|---|
author | Lorenzo, Petra I. Martín-Montalvo, Alejandro Cobo Vuilleumier, Nadia Gauthier, Benoit R. |
author_facet | Lorenzo, Petra I. Martín-Montalvo, Alejandro Cobo Vuilleumier, Nadia Gauthier, Benoit R. |
author_sort | Lorenzo, Petra I. |
collection | PubMed |
description | Gestational diabetes mellitus (GDM), a metabolic disease that develops with the increase in insulin resistance during late pregnancy, is currently one of the most common complications affecting pregnancy. The polygenic nature of GDM, together with the interplay between different genetic variants with nutritional and environmental factors has hindered the full understanding of the etiology of this disease. However, an important genetic overlap has been found with type 2 diabetes mellitus (T2DM) and, as in the case of T2DM, most of the identified loci are associated with β-cell function. Early detection of GDM and adequate interventions to control the maternal glycemia are necessary to avoid the adverse outcomes for both the mother and the offspring. The in utero exposure to the diabetic milieu predispose these children for future diseases, among them T2DM, originating a vicious circle implicated in the increased prevalence of both GDM and T2DM. The involvement of inflammatory processes in the development of GDM highlights the importance of pancreatic β-cell factors able to favor the adaptation processes required during gestation, concomitantly with the protection of the islets from an inflammatory milieu. In this regard, two members of the Pax family of transcription factors, PAX4 and PAX8, together with the chromatin remodeler factor HMG20A, have gained great relevance due to their involvement in β-cell mass adaptation together with their anti-inflammatory properties. Mutations in these factors have been associated with GDM, highlighting these as novel candidates for genetic screening analysis in the identification of women at risk of developing GDM. |
format | Online Article Text |
id | pubmed-6941051 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69410512020-01-09 Molecular Modelling of Islet β-Cell Adaptation to Inflammation in Pregnancy and Gestational Diabetes Mellitus Lorenzo, Petra I. Martín-Montalvo, Alejandro Cobo Vuilleumier, Nadia Gauthier, Benoit R. Int J Mol Sci Review Gestational diabetes mellitus (GDM), a metabolic disease that develops with the increase in insulin resistance during late pregnancy, is currently one of the most common complications affecting pregnancy. The polygenic nature of GDM, together with the interplay between different genetic variants with nutritional and environmental factors has hindered the full understanding of the etiology of this disease. However, an important genetic overlap has been found with type 2 diabetes mellitus (T2DM) and, as in the case of T2DM, most of the identified loci are associated with β-cell function. Early detection of GDM and adequate interventions to control the maternal glycemia are necessary to avoid the adverse outcomes for both the mother and the offspring. The in utero exposure to the diabetic milieu predispose these children for future diseases, among them T2DM, originating a vicious circle implicated in the increased prevalence of both GDM and T2DM. The involvement of inflammatory processes in the development of GDM highlights the importance of pancreatic β-cell factors able to favor the adaptation processes required during gestation, concomitantly with the protection of the islets from an inflammatory milieu. In this regard, two members of the Pax family of transcription factors, PAX4 and PAX8, together with the chromatin remodeler factor HMG20A, have gained great relevance due to their involvement in β-cell mass adaptation together with their anti-inflammatory properties. Mutations in these factors have been associated with GDM, highlighting these as novel candidates for genetic screening analysis in the identification of women at risk of developing GDM. MDPI 2019-12-06 /pmc/articles/PMC6941051/ /pubmed/31817798 http://dx.doi.org/10.3390/ijms20246171 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Lorenzo, Petra I. Martín-Montalvo, Alejandro Cobo Vuilleumier, Nadia Gauthier, Benoit R. Molecular Modelling of Islet β-Cell Adaptation to Inflammation in Pregnancy and Gestational Diabetes Mellitus |
title | Molecular Modelling of Islet β-Cell Adaptation to Inflammation in Pregnancy and Gestational Diabetes Mellitus |
title_full | Molecular Modelling of Islet β-Cell Adaptation to Inflammation in Pregnancy and Gestational Diabetes Mellitus |
title_fullStr | Molecular Modelling of Islet β-Cell Adaptation to Inflammation in Pregnancy and Gestational Diabetes Mellitus |
title_full_unstemmed | Molecular Modelling of Islet β-Cell Adaptation to Inflammation in Pregnancy and Gestational Diabetes Mellitus |
title_short | Molecular Modelling of Islet β-Cell Adaptation to Inflammation in Pregnancy and Gestational Diabetes Mellitus |
title_sort | molecular modelling of islet β-cell adaptation to inflammation in pregnancy and gestational diabetes mellitus |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941051/ https://www.ncbi.nlm.nih.gov/pubmed/31817798 http://dx.doi.org/10.3390/ijms20246171 |
work_keys_str_mv | AT lorenzopetrai molecularmodellingofisletbcelladaptationtoinflammationinpregnancyandgestationaldiabetesmellitus AT martinmontalvoalejandro molecularmodellingofisletbcelladaptationtoinflammationinpregnancyandgestationaldiabetesmellitus AT cobovuilleumiernadia molecularmodellingofisletbcelladaptationtoinflammationinpregnancyandgestationaldiabetesmellitus AT gauthierbenoitr molecularmodellingofisletbcelladaptationtoinflammationinpregnancyandgestationaldiabetesmellitus |