Cargando…

The Relationship between Uterine, Fecal, Bedding, and Airborne Dust Microbiota from Dairy Cows and Their Environment: A Pilot Study

SIMPLE SUMMARY: After calving, dairy cows face the risk of negative energy balance, inflammation, and immunosuppression, which may result in bacterial infection and disruption of the normal microbiota, thus encouraging the development of metritis and endometritis. This study characterized uterine, f...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Thuong T., Miyake, Ayumi, Tran, Tu T.M., Tsuruta, Takeshi, Nishino, Naoki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941062/
https://www.ncbi.nlm.nih.gov/pubmed/31766341
http://dx.doi.org/10.3390/ani9121007
Descripción
Sumario:SIMPLE SUMMARY: After calving, dairy cows face the risk of negative energy balance, inflammation, and immunosuppression, which may result in bacterial infection and disruption of the normal microbiota, thus encouraging the development of metritis and endometritis. This study characterized uterine, fecal, bedding, and airborne dust microbiota from postpartum dairy cows and their environment during summer and winter. The results clarify the importance of microbiota in cowshed environments, i.e., bedding and airborne dust, in understanding the postpartum uterine microbiota of dairy cows. ABSTRACT: The aim of this study was to characterize uterine, fecal, bedding, and airborne dust microbiota from postpartum dairy cows and their environment. The cows were managed by the free-stall housing system, and samples for microbiota and serum metabolite assessment were collected during summer and winter when the cows were at one and two months postpartum. Uterine microbiota varied between seasons; the five most prevalent taxa were Enterobacteriaceae, Moraxellaceae, Ruminococcaceae, Staphylococcaceae, and Lactobacillaceae during summer, and Ruminococcaceae, Lachnospiraceae, Bacteroidaceae, Moraxellaceae, and Clostridiaceae during winter. Although Actinomycetaceae and Mycoplasmataceae were detected at high abundance in several uterine samples, the relationship between the uterine microbiota and serum metabolite concentrations was unclear. The fecal microbiota was stable regardless of the season, whereas bedding and airborne dust microbiota varied between summer and winter. With regards to uterine, bedding, and airborne dust microbiota, Enterobacteriaceae, Moraxellaceae, Staphylococcaceae, and Lactobacillaceae were more abundant during summer, and Ruminococcaceae, Lachnospiraceae, Bacteroidaceae, and Clostridiaceae were more abundant during winter. Canonical analysis of principal coordinates confirmed the relationship between uterine and cowshed microbiota. These results indicated that the uterine microbiota may vary when the microbiota in cowshed environments changes.