Cargando…

Computational modelling in source space from scalp EEG to inform presurgical evaluation of epilepsy

OBJECTIVE: The effectiveness of intracranial electroencephalography (iEEG) to inform epilepsy surgery depends on where iEEG electrodes are implanted. This decision is informed by noninvasive recording modalities such as scalp EEG. Herein we propose a framework to interrogate scalp EEG and determine...

Descripción completa

Detalles Bibliográficos
Autores principales: Lopes, Marinho A., Junges, Leandro, Tait, Luke, Terry, John R., Abela, Eugenio, Richardson, Mark P., Goodfellow, Marc
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941468/
https://www.ncbi.nlm.nih.gov/pubmed/31812920
http://dx.doi.org/10.1016/j.clinph.2019.10.027
_version_ 1783484558549712896
author Lopes, Marinho A.
Junges, Leandro
Tait, Luke
Terry, John R.
Abela, Eugenio
Richardson, Mark P.
Goodfellow, Marc
author_facet Lopes, Marinho A.
Junges, Leandro
Tait, Luke
Terry, John R.
Abela, Eugenio
Richardson, Mark P.
Goodfellow, Marc
author_sort Lopes, Marinho A.
collection PubMed
description OBJECTIVE: The effectiveness of intracranial electroencephalography (iEEG) to inform epilepsy surgery depends on where iEEG electrodes are implanted. This decision is informed by noninvasive recording modalities such as scalp EEG. Herein we propose a framework to interrogate scalp EEG and determine epilepsy lateralization to aid in electrode implantation. METHODS: We use eLORETA to map source activities from seizure epochs recorded from scalp EEG and consider 15 regions of interest (ROIs). Functional networks are then constructed using the phase-locking value and studied using a mathematical model. By removing different ROIs from the network and simulating their impact on the network’s ability to generate seizures in silico, the framework provides predictions of epilepsy lateralization. We consider 15 individuals from the EPILEPSIAE database and study a total of 62 seizures. Results were assessed by taking into account actual intracranial implantations and surgical outcome. RESULTS: The framework provided potentially useful information regarding epilepsy lateralization in 12 out of the 15 individuals ([Formula: see text] , binomial test). CONCLUSIONS: Our results show promise for the use of this framework to better interrogate scalp EEG to determine epilepsy lateralization. SIGNIFICANCE: The framework may aid clinicians in the decision process to define where to implant electrodes for intracranial monitoring.
format Online
Article
Text
id pubmed-6941468
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-69414682020-01-07 Computational modelling in source space from scalp EEG to inform presurgical evaluation of epilepsy Lopes, Marinho A. Junges, Leandro Tait, Luke Terry, John R. Abela, Eugenio Richardson, Mark P. Goodfellow, Marc Clin Neurophysiol Article OBJECTIVE: The effectiveness of intracranial electroencephalography (iEEG) to inform epilepsy surgery depends on where iEEG electrodes are implanted. This decision is informed by noninvasive recording modalities such as scalp EEG. Herein we propose a framework to interrogate scalp EEG and determine epilepsy lateralization to aid in electrode implantation. METHODS: We use eLORETA to map source activities from seizure epochs recorded from scalp EEG and consider 15 regions of interest (ROIs). Functional networks are then constructed using the phase-locking value and studied using a mathematical model. By removing different ROIs from the network and simulating their impact on the network’s ability to generate seizures in silico, the framework provides predictions of epilepsy lateralization. We consider 15 individuals from the EPILEPSIAE database and study a total of 62 seizures. Results were assessed by taking into account actual intracranial implantations and surgical outcome. RESULTS: The framework provided potentially useful information regarding epilepsy lateralization in 12 out of the 15 individuals ([Formula: see text] , binomial test). CONCLUSIONS: Our results show promise for the use of this framework to better interrogate scalp EEG to determine epilepsy lateralization. SIGNIFICANCE: The framework may aid clinicians in the decision process to define where to implant electrodes for intracranial monitoring. Elsevier 2020-01 /pmc/articles/PMC6941468/ /pubmed/31812920 http://dx.doi.org/10.1016/j.clinph.2019.10.027 Text en © 2019 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Lopes, Marinho A.
Junges, Leandro
Tait, Luke
Terry, John R.
Abela, Eugenio
Richardson, Mark P.
Goodfellow, Marc
Computational modelling in source space from scalp EEG to inform presurgical evaluation of epilepsy
title Computational modelling in source space from scalp EEG to inform presurgical evaluation of epilepsy
title_full Computational modelling in source space from scalp EEG to inform presurgical evaluation of epilepsy
title_fullStr Computational modelling in source space from scalp EEG to inform presurgical evaluation of epilepsy
title_full_unstemmed Computational modelling in source space from scalp EEG to inform presurgical evaluation of epilepsy
title_short Computational modelling in source space from scalp EEG to inform presurgical evaluation of epilepsy
title_sort computational modelling in source space from scalp eeg to inform presurgical evaluation of epilepsy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941468/
https://www.ncbi.nlm.nih.gov/pubmed/31812920
http://dx.doi.org/10.1016/j.clinph.2019.10.027
work_keys_str_mv AT lopesmarinhoa computationalmodellinginsourcespacefromscalpeegtoinformpresurgicalevaluationofepilepsy
AT jungesleandro computationalmodellinginsourcespacefromscalpeegtoinformpresurgicalevaluationofepilepsy
AT taitluke computationalmodellinginsourcespacefromscalpeegtoinformpresurgicalevaluationofepilepsy
AT terryjohnr computationalmodellinginsourcespacefromscalpeegtoinformpresurgicalevaluationofepilepsy
AT abelaeugenio computationalmodellinginsourcespacefromscalpeegtoinformpresurgicalevaluationofepilepsy
AT richardsonmarkp computationalmodellinginsourcespacefromscalpeegtoinformpresurgicalevaluationofepilepsy
AT goodfellowmarc computationalmodellinginsourcespacefromscalpeegtoinformpresurgicalevaluationofepilepsy