Cargando…
Acquisition, Visualization and Potential Applications of 3D Data in Anatomic Pathology
Although human anatomy and histology are naturally three-dimensional (3D), commonly used diagnostic and educational tools are technologically restricted to providing two-dimensional representations (e.g. gross photography and glass slides). This limitation may be overcome by employing techniques to...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Applied Systems srl
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941555/ https://www.ncbi.nlm.nih.gov/pubmed/32309587 http://dx.doi.org/10.15190/d.2016.15 |
Sumario: | Although human anatomy and histology are naturally three-dimensional (3D), commonly used diagnostic and educational tools are technologically restricted to providing two-dimensional representations (e.g. gross photography and glass slides). This limitation may be overcome by employing techniques to acquire and display 3D data, which refers to the digital information used to describe a 3D object mathematically. There are several established and experimental strategies to capture macroscopic and microscopic 3D data. In addition, recent hardware and software innovations have propelled the visualization of 3D models, including virtual and augmented reality. Accompanying these advances are novel clinical and non-clinical applications of 3D data in pathology. Medical education and research stand to benefit a great deal from utilizing 3D data as it can change our understanding of complex anatomical and histological structures. Although these technologies are yet to be adopted in routine surgical pathology, forensic pathology has embraced 3D scanning and model reconstruction. In this review, we intend to provide a general overview of the technologies and emerging applications involved with 3D data. |
---|