Cargando…
Characterization Of Blood–Brain Barrier Crossing And Tumor Homing Peptides By Molecular Dynamics Simulations
INTRODUCTION: The new frontier of tumor diagnosis and treatment relies on the development of delivery strategies capable of allowing the specific targeting of the diagnostic agents/chemotherapeutics, avoiding side effects. In the case of brain tumors, achieving this goal is made more difficult by th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941700/ https://www.ncbi.nlm.nih.gov/pubmed/31920308 http://dx.doi.org/10.2147/IJN.S225793 |
_version_ | 1783484587728437248 |
---|---|
author | Arcangeli, Caterina Lico, Chiara Baschieri, Selene Mancuso, Mariateresa |
author_facet | Arcangeli, Caterina Lico, Chiara Baschieri, Selene Mancuso, Mariateresa |
author_sort | Arcangeli, Caterina |
collection | PubMed |
description | INTRODUCTION: The new frontier of tumor diagnosis and treatment relies on the development of delivery strategies capable of allowing the specific targeting of the diagnostic agents/chemotherapeutics, avoiding side effects. In the case of brain tumors, achieving this goal is made more difficult by the presence of the blood–brain barrier (BBB). Peptides have been revealed as excellent candidates for both BBB crossing and specific cancer homing. Nanoparticles (NPs), functionalized with BBB crossing and tumor homing (TH) peptides, are emerging as smart theranostic systems. However, there is still poor knowledge concerning the molecular structure and dynamical properties of these peptides, essential requirements for a suitable functionalization of the delivery systems themselves. METHODS: In this work, by means of molecular dynamics (MD) simulations, we have extensively characterized the structural and dynamical behavior of several peptides, known to be endowed of BBB crossing and TH properties. RESULTS: The simulations point out that, on the basis of their conformational dynamics, the peptides can be classified in two main groups: 1) peptides assuming a specific structural conformation, a feature that could be important for interacting with the molecular target but that may limit their use as functionalizing molecules and 2) highly flexible peptides whose interaction with the target may be independent of a particular structural conformation and that may represent good candidates for the functionalization of theranostic NP-based platforms. DISCUSSION: Such findings may be useful for the de novo designing of NP-based delivery systems. |
format | Online Article Text |
id | pubmed-6941700 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-69417002020-01-09 Characterization Of Blood–Brain Barrier Crossing And Tumor Homing Peptides By Molecular Dynamics Simulations Arcangeli, Caterina Lico, Chiara Baschieri, Selene Mancuso, Mariateresa Int J Nanomedicine Original Research INTRODUCTION: The new frontier of tumor diagnosis and treatment relies on the development of delivery strategies capable of allowing the specific targeting of the diagnostic agents/chemotherapeutics, avoiding side effects. In the case of brain tumors, achieving this goal is made more difficult by the presence of the blood–brain barrier (BBB). Peptides have been revealed as excellent candidates for both BBB crossing and specific cancer homing. Nanoparticles (NPs), functionalized with BBB crossing and tumor homing (TH) peptides, are emerging as smart theranostic systems. However, there is still poor knowledge concerning the molecular structure and dynamical properties of these peptides, essential requirements for a suitable functionalization of the delivery systems themselves. METHODS: In this work, by means of molecular dynamics (MD) simulations, we have extensively characterized the structural and dynamical behavior of several peptides, known to be endowed of BBB crossing and TH properties. RESULTS: The simulations point out that, on the basis of their conformational dynamics, the peptides can be classified in two main groups: 1) peptides assuming a specific structural conformation, a feature that could be important for interacting with the molecular target but that may limit their use as functionalizing molecules and 2) highly flexible peptides whose interaction with the target may be independent of a particular structural conformation and that may represent good candidates for the functionalization of theranostic NP-based platforms. DISCUSSION: Such findings may be useful for the de novo designing of NP-based delivery systems. Dove 2019-12-30 /pmc/articles/PMC6941700/ /pubmed/31920308 http://dx.doi.org/10.2147/IJN.S225793 Text en © 2019 Arcangeli et al. http://creativecommons.org/licenses/by-nc/3.0/ This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Arcangeli, Caterina Lico, Chiara Baschieri, Selene Mancuso, Mariateresa Characterization Of Blood–Brain Barrier Crossing And Tumor Homing Peptides By Molecular Dynamics Simulations |
title | Characterization Of Blood–Brain Barrier Crossing And Tumor Homing Peptides By Molecular Dynamics Simulations |
title_full | Characterization Of Blood–Brain Barrier Crossing And Tumor Homing Peptides By Molecular Dynamics Simulations |
title_fullStr | Characterization Of Blood–Brain Barrier Crossing And Tumor Homing Peptides By Molecular Dynamics Simulations |
title_full_unstemmed | Characterization Of Blood–Brain Barrier Crossing And Tumor Homing Peptides By Molecular Dynamics Simulations |
title_short | Characterization Of Blood–Brain Barrier Crossing And Tumor Homing Peptides By Molecular Dynamics Simulations |
title_sort | characterization of blood–brain barrier crossing and tumor homing peptides by molecular dynamics simulations |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941700/ https://www.ncbi.nlm.nih.gov/pubmed/31920308 http://dx.doi.org/10.2147/IJN.S225793 |
work_keys_str_mv | AT arcangelicaterina characterizationofbloodbrainbarriercrossingandtumorhomingpeptidesbymoleculardynamicssimulations AT licochiara characterizationofbloodbrainbarriercrossingandtumorhomingpeptidesbymoleculardynamicssimulations AT baschieriselene characterizationofbloodbrainbarriercrossingandtumorhomingpeptidesbymoleculardynamicssimulations AT mancusomariateresa characterizationofbloodbrainbarriercrossingandtumorhomingpeptidesbymoleculardynamicssimulations |