Cargando…
Representation learning of genomic sequence motifs with convolutional neural networks
Although convolutional neural networks (CNNs) have been applied to a variety of computational genomics problems, there remains a large gap in our understanding of how they build representations of regulatory genomic sequences. Here we perform systematic experiments on synthetic sequences to reveal h...
Autores principales: | Koo, Peter K., Eddy, Sean R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941814/ https://www.ncbi.nlm.nih.gov/pubmed/31856220 http://dx.doi.org/10.1371/journal.pcbi.1007560 |
Ejemplares similares
-
Convolutional neural network based on SMILES representation of compounds for detecting chemical motif
por: Hirohara, Maya, et al.
Publicado: (2018) -
pysster: classification of biological sequences by learning sequence and structure motifs with convolutional neural networks
por: Budach, Stefan, et al.
Publicado: (2018) -
Using graph convolutional neural networks to learn a representation for glycans
por: Burkholz, Rebekka, et al.
Publicado: (2021) -
Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks
por: Xuan, Ping, et al.
Publicado: (2019) -
The contribution of object identity and configuration to scene representation in convolutional neural networks
por: Tang, Kevin, et al.
Publicado: (2022)