Cargando…

Dramatically decreased T cell responses but persistent IgE upon reduced pollen exposure

Mugwort pollen allergy is frequent in parts of Europe. As mugwort pollen contains only one major allergen, Art v 1, which harbors only one T cell epitope, we employed mugwort pollen allergy as a model to study allergen-specific T cell responses. However, after 2004, we noticed a drastic decrease in...

Descripción completa

Detalles Bibliográficos
Autores principales: Van Hemelen, Dries, Hemmer, Wolfgang, Kmenta, Maximilian, Berger, Uwe B., Kinaciyan, Tamar, Bohle, Barbara, Jahn-Schmida, Beatrice
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941935/
https://www.ncbi.nlm.nih.gov/pubmed/31402150
http://dx.doi.org/10.1016/j.imbio.2019.07.003
Descripción
Sumario:Mugwort pollen allergy is frequent in parts of Europe. As mugwort pollen contains only one major allergen, Art v 1, which harbors only one T cell epitope, we employed mugwort pollen allergy as a model to study allergen-specific T cell responses. However, after 2004, we noticed a drastic decrease in the T cell responses to Art v 1 and eventually it became almost impossible to detect allergen-specific responses at the T cell level in mugwort-allergic individuals. To explain this observation, we retrospectively investigated the local exposure to mugwort pollen and its possible correlation to the frequency and reactivity of allergen-specific T cells. The total annual pollen indices dramatically dropped after 2004 and never reached previous levels again. Local sensitization to mugwort pollen and serum IgE antibodies specific for Art v 1 remained unchanged until 2015. Our mugwort pollen model shows that specific IgE-levels are maintained for extremely long time periods in spite of a long-term reduction of natural allergen exposure to levels that are too low to boost specific T cells.