Cargando…
De novo generation of hit-like molecules from gene expression signatures using artificial intelligence
Finding new molecules with a desired biological activity is an extremely difficult task. In this context, artificial intelligence and generative models have been used for molecular de novo design and compound optimization. Herein, we report a generative model that bridges systems biology and molecul...
Autores principales: | Méndez-Lucio, Oscar, Baillif, Benoit, Clevert, Djork-Arné, Rouquié, David, Wichard, Joerg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941972/ https://www.ncbi.nlm.nih.gov/pubmed/31900408 http://dx.doi.org/10.1038/s41467-019-13807-w |
Ejemplares similares
-
Exploring the Use of Compound-Induced Transcriptomic Data Generated From Cell Lines to Predict Compound Activity Toward Molecular Targets
por: Baillif, Benoît, et al.
Publicado: (2020) -
Unsupervised Representation Learning for Proteochemometric Modeling
por: Kim, Paul T., et al.
Publicado: (2021) -
De Novo Design of Bioactive Small Molecules by Artificial Intelligence
por: Merk, Daniel, et al.
Publicado: (2018) -
Rectified factor networks for biclustering of omics data
por: Clevert, Djork-Arné, et al.
Publicado: (2017) -
Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations
por: Winter, Robin, et al.
Publicado: (2018)