Cargando…
A deep-learning technique for phase identification in multiphase inorganic compounds using synthetic XRD powder patterns
Here we report a facile, prompt protocol based on deep-learning techniques to sort out intricate phase identification and quantification problems in complex multiphase inorganic compounds. We simulate plausible powder X-ray powder diffraction (XRD) patterns for 170 inorganic compounds in the Sr-Li-A...
Autores principales: | Lee, Jin-Woong, Park, Woon Bae, Lee, Jin Hee, Singh, Satendra Pal, Sohn, Kee-Sun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941984/ https://www.ncbi.nlm.nih.gov/pubmed/31900391 http://dx.doi.org/10.1038/s41467-019-13749-3 |
Ejemplares similares
-
Publisher Correction: A deep-learning technique for phase identification in multiphase inorganic compounds using synthetic XRD powder patterns
por: Lee, Jin-Woong, et al.
Publicado: (2020) -
Systematic Approach To Calculate
the Band Gap Energy
of a Disordered Compound with a Low Symmetry and Large Cell Size via
Density Functional Theory
por: Park, Woon Bae, et al.
Publicado: (2016) -
Classification of crystal structure using a convolutional neural network
por: Park, Woon Bae, et al.
Publicado: (2017) -
XRD and TG-DTA Study of New Alkali Activated Materials Based on Fly Ash with Sand and Glass Powder
por: Burduhos Nergis, Dumitru Doru, et al.
Publicado: (2020) -
Structural Details of BaTiO(3) Nano-Powders Deduced from the Anisotropic XRD Peak Broadening
por: Pasuk, Iuliana, et al.
Publicado: (2021)