Cargando…

Cell-type-specific dysregulation of RNA alternative splicing in short tandem repeat mouse knockin models of myotonic dystrophy

Short tandem repeats (STRs) are prone to expansion mutations that cause multiple hereditary neurological and neuromuscular diseases. To study pathomechanisms using mouse models that recapitulate the tissue specificity and developmental timing of an STR expansion gene, we used rolling circle amplific...

Descripción completa

Detalles Bibliográficos
Autores principales: Nutter, Curtis A., Bubenik, Jodi L., Oliveira, Ruan, Ivankovic, Franjo, Sznajder, Łukasz J., Kidd, Benjamin M., Pinto, Belinda S., Otero, Brittney A., Carter, Helmut A., Vitriol, Eric A., Wang, Eric T., Swanson, Maurice S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6942047/
https://www.ncbi.nlm.nih.gov/pubmed/31624084
http://dx.doi.org/10.1101/gad.328963.119
_version_ 1783484644760485888
author Nutter, Curtis A.
Bubenik, Jodi L.
Oliveira, Ruan
Ivankovic, Franjo
Sznajder, Łukasz J.
Kidd, Benjamin M.
Pinto, Belinda S.
Otero, Brittney A.
Carter, Helmut A.
Vitriol, Eric A.
Wang, Eric T.
Swanson, Maurice S.
author_facet Nutter, Curtis A.
Bubenik, Jodi L.
Oliveira, Ruan
Ivankovic, Franjo
Sznajder, Łukasz J.
Kidd, Benjamin M.
Pinto, Belinda S.
Otero, Brittney A.
Carter, Helmut A.
Vitriol, Eric A.
Wang, Eric T.
Swanson, Maurice S.
author_sort Nutter, Curtis A.
collection PubMed
description Short tandem repeats (STRs) are prone to expansion mutations that cause multiple hereditary neurological and neuromuscular diseases. To study pathomechanisms using mouse models that recapitulate the tissue specificity and developmental timing of an STR expansion gene, we used rolling circle amplification and CRISPR/Cas9-mediated genome editing to generate Dmpk CTG expansion (CTG(exp)) knockin models of myotonic dystrophy type 1 (DM1). We demonstrate that skeletal muscle myoblasts and brain choroid plexus epithelial cells are particularly susceptible to Dmpk CTG(exp) mutations and RNA missplicing. Our results implicate dysregulation of muscle regeneration and cerebrospinal fluid homeostasis as early pathogenic events in DM1.
format Online
Article
Text
id pubmed-6942047
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Cold Spring Harbor Laboratory Press
record_format MEDLINE/PubMed
spelling pubmed-69420472020-06-01 Cell-type-specific dysregulation of RNA alternative splicing in short tandem repeat mouse knockin models of myotonic dystrophy Nutter, Curtis A. Bubenik, Jodi L. Oliveira, Ruan Ivankovic, Franjo Sznajder, Łukasz J. Kidd, Benjamin M. Pinto, Belinda S. Otero, Brittney A. Carter, Helmut A. Vitriol, Eric A. Wang, Eric T. Swanson, Maurice S. Genes Dev Research Communication Short tandem repeats (STRs) are prone to expansion mutations that cause multiple hereditary neurological and neuromuscular diseases. To study pathomechanisms using mouse models that recapitulate the tissue specificity and developmental timing of an STR expansion gene, we used rolling circle amplification and CRISPR/Cas9-mediated genome editing to generate Dmpk CTG expansion (CTG(exp)) knockin models of myotonic dystrophy type 1 (DM1). We demonstrate that skeletal muscle myoblasts and brain choroid plexus epithelial cells are particularly susceptible to Dmpk CTG(exp) mutations and RNA missplicing. Our results implicate dysregulation of muscle regeneration and cerebrospinal fluid homeostasis as early pathogenic events in DM1. Cold Spring Harbor Laboratory Press 2019-12-01 /pmc/articles/PMC6942047/ /pubmed/31624084 http://dx.doi.org/10.1101/gad.328963.119 Text en © 2019 Nutter et al.; Published by Cold Spring Harbor Laboratory Press http://creativecommons.org/licenses/by-nc/4.0/ This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.
spellingShingle Research Communication
Nutter, Curtis A.
Bubenik, Jodi L.
Oliveira, Ruan
Ivankovic, Franjo
Sznajder, Łukasz J.
Kidd, Benjamin M.
Pinto, Belinda S.
Otero, Brittney A.
Carter, Helmut A.
Vitriol, Eric A.
Wang, Eric T.
Swanson, Maurice S.
Cell-type-specific dysregulation of RNA alternative splicing in short tandem repeat mouse knockin models of myotonic dystrophy
title Cell-type-specific dysregulation of RNA alternative splicing in short tandem repeat mouse knockin models of myotonic dystrophy
title_full Cell-type-specific dysregulation of RNA alternative splicing in short tandem repeat mouse knockin models of myotonic dystrophy
title_fullStr Cell-type-specific dysregulation of RNA alternative splicing in short tandem repeat mouse knockin models of myotonic dystrophy
title_full_unstemmed Cell-type-specific dysregulation of RNA alternative splicing in short tandem repeat mouse knockin models of myotonic dystrophy
title_short Cell-type-specific dysregulation of RNA alternative splicing in short tandem repeat mouse knockin models of myotonic dystrophy
title_sort cell-type-specific dysregulation of rna alternative splicing in short tandem repeat mouse knockin models of myotonic dystrophy
topic Research Communication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6942047/
https://www.ncbi.nlm.nih.gov/pubmed/31624084
http://dx.doi.org/10.1101/gad.328963.119
work_keys_str_mv AT nuttercurtisa celltypespecificdysregulationofrnaalternativesplicinginshorttandemrepeatmouseknockinmodelsofmyotonicdystrophy
AT bubenikjodil celltypespecificdysregulationofrnaalternativesplicinginshorttandemrepeatmouseknockinmodelsofmyotonicdystrophy
AT oliveiraruan celltypespecificdysregulationofrnaalternativesplicinginshorttandemrepeatmouseknockinmodelsofmyotonicdystrophy
AT ivankovicfranjo celltypespecificdysregulationofrnaalternativesplicinginshorttandemrepeatmouseknockinmodelsofmyotonicdystrophy
AT sznajderłukaszj celltypespecificdysregulationofrnaalternativesplicinginshorttandemrepeatmouseknockinmodelsofmyotonicdystrophy
AT kiddbenjaminm celltypespecificdysregulationofrnaalternativesplicinginshorttandemrepeatmouseknockinmodelsofmyotonicdystrophy
AT pintobelindas celltypespecificdysregulationofrnaalternativesplicinginshorttandemrepeatmouseknockinmodelsofmyotonicdystrophy
AT oterobrittneya celltypespecificdysregulationofrnaalternativesplicinginshorttandemrepeatmouseknockinmodelsofmyotonicdystrophy
AT carterhelmuta celltypespecificdysregulationofrnaalternativesplicinginshorttandemrepeatmouseknockinmodelsofmyotonicdystrophy
AT vitriolerica celltypespecificdysregulationofrnaalternativesplicinginshorttandemrepeatmouseknockinmodelsofmyotonicdystrophy
AT wangerict celltypespecificdysregulationofrnaalternativesplicinginshorttandemrepeatmouseknockinmodelsofmyotonicdystrophy
AT swansonmaurices celltypespecificdysregulationofrnaalternativesplicinginshorttandemrepeatmouseknockinmodelsofmyotonicdystrophy