Cargando…

Conditioned Medium from Adipose-Derived Stem Cell Inhibits Jurkat Cell Proliferation through TGF-β1 and p38/MAPK Pathway

BACKGROUND: Since the first report on the immunomodulatory and immunosuppressive properties of Adipose-Derived Stem Cells (ADSCs), many studies have elucidated the underlying molecular mechanism of their suppressive activity on mixed lymphocyte reaction (MLR). However, a gap exists in our understand...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiuxia, Wang, Yinmin, Zhou, Xianyu, Liu, Fei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6942699/
https://www.ncbi.nlm.nih.gov/pubmed/31934530
http://dx.doi.org/10.1155/2019/2107414
Descripción
Sumario:BACKGROUND: Since the first report on the immunomodulatory and immunosuppressive properties of Adipose-Derived Stem Cells (ADSCs), many studies have elucidated the underlying molecular mechanism of their suppressive activity on mixed lymphocyte reaction (MLR). However, a gap exists in our understanding of the molecular mechanism of ADSC-conditioned medium (ADSC-CM) on MLR. METHODS: ADSCs were isolated from Human Adipose Tissues, and Enzyme-linked Immunosorbent Assay (ELISA) was used to identify the concentration of transforming growth factor β1 (TGF-β1) in ADSC-CM. The transcript abundance of TGF-β1, as well as that of insulin-like growth factor binding protein 3 (IGF-BP3), was evaluated using qRT-PCR on Jurkat cells cultured in ADSC-CM for 24 hours. The proliferation of the Jurkat cells was assessed using cell cycle assay. Western blotting was performed to identify potential signaling molecules involved in the ADSC-CM-induced inhibition of Jurkat cell proliferation. RESULTS: The findings confirm that the isolated ADSCs demonstrate classic ADSC characteristics. The level of TGF-β1 was found to be low in ADSC-CM, as assessed by ELISA. Jurkat cells grown in ADSC-CM show reduced gene expression of TGF-β1 and IGF-BP3 compared with that of the control group. Furthermore, western blotting of ADSC-CM grown Jurkat cells that were blocked at the G0/G1 stage indicates that ADSC-CM decreases the protein expression of pP38 in a dose-dependent manner. CONCLUSION: ADSC-CM can inhibit Jurkat cell proliferation through the TGF-β1-p38 signaling pathway.