Cargando…

Targeted delivery and enhanced gene-silencing activity of centrally modified folic acid–siRNA conjugates

One of the major hurdles in RNAi research has been the development of safe and effective delivery systems for siRNAs. Although various chemical modifications have been proposed to improve their pharmacokinetic behaviour, their delivery to target cells and tissues presents many challenges. In this wo...

Descripción completa

Detalles Bibliográficos
Autores principales: Salim, Lidya, Islam, Golam, Desaulniers, Jean-Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943128/
https://www.ncbi.nlm.nih.gov/pubmed/31777918
http://dx.doi.org/10.1093/nar/gkz1115
Descripción
Sumario:One of the major hurdles in RNAi research has been the development of safe and effective delivery systems for siRNAs. Although various chemical modifications have been proposed to improve their pharmacokinetic behaviour, their delivery to target cells and tissues presents many challenges. In this work, we implemented a receptor-targeting strategy to selectively deliver siRNAs to cancer cells using folic acid as a ligand. Folic acid is capable of binding to cell-surface folate receptors with high affinity. These receptors have become important molecular targets for cancer research as they are overexpressed in numerous cancers despite being expressed at low levels in normal tissues. Employing a post-column copper-catalyzed alkyne–azide cycloaddition (CuAAC), we report the synthesis of siRNAs bearing folic acid modifications at different positions within the sense strand. In the absence of a transfection carrier, these siRNAs were selectively taken up by cancer cells expressing folate receptors. We show that centrally modified folic acid–siRNAs display enhanced gene-silencing activity against an exogenous gene target (∼80% knockdown after 0.75 μM treatment) and low cytotoxicity. In addition, these siRNAs achieved potent dose-dependent knockdown of endogenous Bcl-2, an important anti-apoptotic gene.