Cargando…
SAME-clustering: Single-cell Aggregated Clustering via Mixture Model Ensemble
Clustering is an essential step in the analysis of single cell RNA-seq (scRNA-seq) data to shed light on tissue complexity including the number of cell types and transcriptomic signatures of each cell type. Due to its importance, novel methods have been developed recently for this purpose. However,...
Autores principales: | Huh, Ruth, Yang, Yuchen, Jiang, Yuchao, Shen, Yin, Li, Yun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943136/ https://www.ncbi.nlm.nih.gov/pubmed/31777938 http://dx.doi.org/10.1093/nar/gkz959 |
Ejemplares similares
-
BREM-SC: a bayesian random effects mixture model for joint clustering single cell multi-omics data
por: Wang, Xinjun, et al.
Publicado: (2020) -
Finding approximate gene clusters with Gecko 3
por: Winter, Sascha, et al.
Publicado: (2016) -
Temporal data mining via unsupervised ensemble learning
por: Yang, Yun
Publicado: (2016) -
EnsCat: clustering of categorical data via ensembling
por: Clarke, Bertrand S., et al.
Publicado: (2016) -
Linux clustering: building and maintaining Linux clusters
por: Bookman, Charles
Publicado: (2003)