Cargando…

Housefly Pupae-Derived Antioxidant Peptides Exerting Neuroprotective Effects on Hydrogen Peroxide-Induced Oxidative Damage in PC12 Cells

In this study, two antioxidant peptides were identified and characterized from the alcalase-hydrolysate of housefly (Musca domestica L.) pupae guided by ABTS cation radical scavenging activity. Peptides sequences were identified as DFTPVCTTELGR (DR12, 1338.48 Da) and ARFEELCSDLFR (AR12, 1485.66 Da)...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Tingting, Zhang, Sichen, Yang, Wenzhe, Zhao, Zhimin, Yang, Depo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943417/
https://www.ncbi.nlm.nih.gov/pubmed/31817866
http://dx.doi.org/10.3390/molecules24244486
Descripción
Sumario:In this study, two antioxidant peptides were identified and characterized from the alcalase-hydrolysate of housefly (Musca domestica L.) pupae guided by ABTS cation radical scavenging activity. Peptides sequences were identified as DFTPVCTTELGR (DR12, 1338.48 Da) and ARFEELCSDLFR (AR12, 1485.66 Da) using nano-liquid chromatography-tandem mass spectrometry (LC-MS/MS). Both DR12 and AR12 exert strong ABTS cation radical scavenging ability with EC(50) values of 0.39 and 0.35 mM, respectively. Moreover, AR12 can effectively protect PC12 cells from oxidative damage induced by hydrogen peroxide (H(2)O(2)) by decreasing intracellular reactive oxygen species (ROS) and malonaldehyde (MDA), recovering cellular mitochondrial membrane potential (MMP), and increasing the activity of intracellular superoxide dismutase (SOD). Stability tests suggest that AR12 is competent for the challenge of heating, acid, alkali or simulated gastrointestinal (GI) digestion and exhibits great activity to remove ABTS cation radical. DR12 shows a great stability against heating, but its antioxidative ability declines after being treated with acid, alkali or simulated GI digestion. In general, both DR12 and AR12 identified from housefly pupae hydrolysate stand a chance of being potential antioxidants or precursors to antioxidants and AR12 might be applied in the field of neuroprotection.