Cargando…
Antioxidant Metabolism and Chlorophyll Fluorescence during the Acclimatisation to Ex Vitro Conditions of Micropropagated Stevia rebaudiana Bertoni Plants
In this study, the functioning of antioxidant metabolism and photosynthesis efficiency during the acclimatisation of Stevia rebaudiana plants to ex vitro conditions was determined. A high percentage of acclimatised plants (93.3%) was obtained after four weeks. According to the extent of lipid peroxi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943525/ https://www.ncbi.nlm.nih.gov/pubmed/31817031 http://dx.doi.org/10.3390/antiox8120615 |
Sumario: | In this study, the functioning of antioxidant metabolism and photosynthesis efficiency during the acclimatisation of Stevia rebaudiana plants to ex vitro conditions was determined. A high percentage of acclimatised plants (93.3%) was obtained after four weeks. According to the extent of lipid peroxidation, an oxidative stress occurred during the first hours of acclimatisation. A lower activity of monodehydroascorbate reductase (MDHAR) than dehydroascorbate reductase (DHAR) was observed after 2 days of acclimatisation. However, after 7 days of acclimatisation, stevia plants activated the MDHAR route to recycle ascorbate, which is much more efficient energetically than the DHAR route. Superoxide dismutase and catalase activities showed a peak of activity after 7 days of acclimatisation, suggesting a protection against reactive oxygen species. Peroxidase activity increased about 2-fold after 2 days of acclimatisation and remained high until day 14, probably linked to the cell wall stiffening and the lignification processes. In addition, a progressive increase in the photochemical quenching parameters and the electronic transport rate was observed, coupled with a decrease in the non-photochemical quenching parameters, which indicate a progressive photosynthetic efficiency during this process. Taken together, antioxidant enzymes, lipid peroxidation, and chlorophyll fluorescence are proven as suitable tools for the physiological state evaluation of micropropagated plants during acclimatisation to ex vitro conditions. |
---|