Cargando…
Organocatalytic Michael Addition to (D)-Mannitol-Derived Enantiopure Nitroalkenes: A Valuable Strategy for the Synthesis of Densely Functionalized Chiral Molecules
Carbohydrates are abundant renewable resources and are a feedstock for green chemistry and sustainable synthesis of the future. Among the hexoses and the pentoses present in biomass, mannitol was selected in the present project as a valuable platform, directly available from the chiral pool, to buil...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943540/ https://www.ncbi.nlm.nih.gov/pubmed/31847419 http://dx.doi.org/10.3390/molecules24244588 |
_version_ | 1783484896960839680 |
---|---|
author | Caruso, Lucia Puglisi, Alessandra Gillon, Emmerance Benaglia, Maurizio |
author_facet | Caruso, Lucia Puglisi, Alessandra Gillon, Emmerance Benaglia, Maurizio |
author_sort | Caruso, Lucia |
collection | PubMed |
description | Carbohydrates are abundant renewable resources and are a feedstock for green chemistry and sustainable synthesis of the future. Among the hexoses and the pentoses present in biomass, mannitol was selected in the present project as a valuable platform, directly available from the chiral pool, to build highly functionalized molecules. Starting from (R)-2,3-O-cyclohexylidene glyceraldehyde, which is easily prepared in a large scale from D-mannitol, an enantiopure chiral nitro alkene was prepared by reaction with nitromethane, and its reactivity studied. Organocatalytic Michael addition of dimethyl malonate, β-keto esters, and other nucleophiles on the nitro alkene afforded high stereoselectivity and densely functionalized chiral molecules, which were further synthetically developed, leading to five-membered lactones and bicyclic lactams. Preliminary studies showed that the metal-free catalytic reaction on the chiral nitro alkene can be performed under continuous flow conditions, thus enabling the use of (micro)mesofluidic systems for the preparation of enantiomerically pure organic molecules from the chiral pool. |
format | Online Article Text |
id | pubmed-6943540 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69435402020-01-10 Organocatalytic Michael Addition to (D)-Mannitol-Derived Enantiopure Nitroalkenes: A Valuable Strategy for the Synthesis of Densely Functionalized Chiral Molecules Caruso, Lucia Puglisi, Alessandra Gillon, Emmerance Benaglia, Maurizio Molecules Article Carbohydrates are abundant renewable resources and are a feedstock for green chemistry and sustainable synthesis of the future. Among the hexoses and the pentoses present in biomass, mannitol was selected in the present project as a valuable platform, directly available from the chiral pool, to build highly functionalized molecules. Starting from (R)-2,3-O-cyclohexylidene glyceraldehyde, which is easily prepared in a large scale from D-mannitol, an enantiopure chiral nitro alkene was prepared by reaction with nitromethane, and its reactivity studied. Organocatalytic Michael addition of dimethyl malonate, β-keto esters, and other nucleophiles on the nitro alkene afforded high stereoselectivity and densely functionalized chiral molecules, which were further synthetically developed, leading to five-membered lactones and bicyclic lactams. Preliminary studies showed that the metal-free catalytic reaction on the chiral nitro alkene can be performed under continuous flow conditions, thus enabling the use of (micro)mesofluidic systems for the preparation of enantiomerically pure organic molecules from the chiral pool. MDPI 2019-12-14 /pmc/articles/PMC6943540/ /pubmed/31847419 http://dx.doi.org/10.3390/molecules24244588 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Caruso, Lucia Puglisi, Alessandra Gillon, Emmerance Benaglia, Maurizio Organocatalytic Michael Addition to (D)-Mannitol-Derived Enantiopure Nitroalkenes: A Valuable Strategy for the Synthesis of Densely Functionalized Chiral Molecules |
title | Organocatalytic Michael Addition to (D)-Mannitol-Derived Enantiopure Nitroalkenes: A Valuable Strategy for the Synthesis of Densely Functionalized Chiral Molecules |
title_full | Organocatalytic Michael Addition to (D)-Mannitol-Derived Enantiopure Nitroalkenes: A Valuable Strategy for the Synthesis of Densely Functionalized Chiral Molecules |
title_fullStr | Organocatalytic Michael Addition to (D)-Mannitol-Derived Enantiopure Nitroalkenes: A Valuable Strategy for the Synthesis of Densely Functionalized Chiral Molecules |
title_full_unstemmed | Organocatalytic Michael Addition to (D)-Mannitol-Derived Enantiopure Nitroalkenes: A Valuable Strategy for the Synthesis of Densely Functionalized Chiral Molecules |
title_short | Organocatalytic Michael Addition to (D)-Mannitol-Derived Enantiopure Nitroalkenes: A Valuable Strategy for the Synthesis of Densely Functionalized Chiral Molecules |
title_sort | organocatalytic michael addition to (d)-mannitol-derived enantiopure nitroalkenes: a valuable strategy for the synthesis of densely functionalized chiral molecules |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943540/ https://www.ncbi.nlm.nih.gov/pubmed/31847419 http://dx.doi.org/10.3390/molecules24244588 |
work_keys_str_mv | AT carusolucia organocatalyticmichaeladditiontodmannitolderivedenantiopurenitroalkenesavaluablestrategyforthesynthesisofdenselyfunctionalizedchiralmolecules AT puglisialessandra organocatalyticmichaeladditiontodmannitolderivedenantiopurenitroalkenesavaluablestrategyforthesynthesisofdenselyfunctionalizedchiralmolecules AT gillonemmerance organocatalyticmichaeladditiontodmannitolderivedenantiopurenitroalkenesavaluablestrategyforthesynthesisofdenselyfunctionalizedchiralmolecules AT benagliamaurizio organocatalyticmichaeladditiontodmannitolderivedenantiopurenitroalkenesavaluablestrategyforthesynthesisofdenselyfunctionalizedchiralmolecules |