Cargando…

Induction of Antioxidant Protein HO-1 Through Nrf2-ARE Signaling Due to Pteryxin in Peucedanum Japonicum Thunb in RAW264.7 Macrophage Cells

This study focused on exploring the nuclear factor-erythroid-2-related factor (Nrf2) active compound to avoid oxidative stress related to various diseases, such as obesity and diabetes mellitus. The activity of the Nrf2-ARE (antioxidant response element) signaling was evaluated by a reporter assay i...

Descripción completa

Detalles Bibliográficos
Autores principales: Taira, Junsei, Ogi, Takayuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943564/
https://www.ncbi.nlm.nih.gov/pubmed/31817423
http://dx.doi.org/10.3390/antiox8120621
_version_ 1783484904083816448
author Taira, Junsei
Ogi, Takayuki
author_facet Taira, Junsei
Ogi, Takayuki
author_sort Taira, Junsei
collection PubMed
description This study focused on exploring the nuclear factor-erythroid-2-related factor (Nrf2) active compound to avoid oxidative stress related to various diseases, such as obesity and diabetes mellitus. The activity of the Nrf2-ARE (antioxidant response element) signaling was evaluated by a reporter assay involving over five hundred various edible medicinal herbs, and the highest Nrf2 activity was found in the ethanol extract of Peucedanum japonicum leaves. The active compound in the extract was isolated by high performance liquid chromatography (HPLC), and the chemical structure was identical to pteryxin based on (1)H, (13)C-NMR spectra and liquid chromatography/time-of-fright mass spectrometer (LC/TOF/MS). From the pteryxin, the transcription factor Nrf2 was accumulated in the nucleus and resulted in the expression of the antioxidant protein, heme oxygenase-1 (HO-1). In addition, the Nrf2 activity involving HO-1 expression due to coumarin derivatives was evaluated together with pteryxin. This suggested that the electrophilicity, due to the α,β-carbonyl and/or substituted acyl groups in the molecule, modulates the cysteine residue in Keap1 via the Michel reaction, at which point the Nrf2 is dissociated from the Keap1. These results suggest that pteryxin will be a useful agent for developing functional foods.
format Online
Article
Text
id pubmed-6943564
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-69435642020-01-10 Induction of Antioxidant Protein HO-1 Through Nrf2-ARE Signaling Due to Pteryxin in Peucedanum Japonicum Thunb in RAW264.7 Macrophage Cells Taira, Junsei Ogi, Takayuki Antioxidants (Basel) Article This study focused on exploring the nuclear factor-erythroid-2-related factor (Nrf2) active compound to avoid oxidative stress related to various diseases, such as obesity and diabetes mellitus. The activity of the Nrf2-ARE (antioxidant response element) signaling was evaluated by a reporter assay involving over five hundred various edible medicinal herbs, and the highest Nrf2 activity was found in the ethanol extract of Peucedanum japonicum leaves. The active compound in the extract was isolated by high performance liquid chromatography (HPLC), and the chemical structure was identical to pteryxin based on (1)H, (13)C-NMR spectra and liquid chromatography/time-of-fright mass spectrometer (LC/TOF/MS). From the pteryxin, the transcription factor Nrf2 was accumulated in the nucleus and resulted in the expression of the antioxidant protein, heme oxygenase-1 (HO-1). In addition, the Nrf2 activity involving HO-1 expression due to coumarin derivatives was evaluated together with pteryxin. This suggested that the electrophilicity, due to the α,β-carbonyl and/or substituted acyl groups in the molecule, modulates the cysteine residue in Keap1 via the Michel reaction, at which point the Nrf2 is dissociated from the Keap1. These results suggest that pteryxin will be a useful agent for developing functional foods. MDPI 2019-12-05 /pmc/articles/PMC6943564/ /pubmed/31817423 http://dx.doi.org/10.3390/antiox8120621 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Taira, Junsei
Ogi, Takayuki
Induction of Antioxidant Protein HO-1 Through Nrf2-ARE Signaling Due to Pteryxin in Peucedanum Japonicum Thunb in RAW264.7 Macrophage Cells
title Induction of Antioxidant Protein HO-1 Through Nrf2-ARE Signaling Due to Pteryxin in Peucedanum Japonicum Thunb in RAW264.7 Macrophage Cells
title_full Induction of Antioxidant Protein HO-1 Through Nrf2-ARE Signaling Due to Pteryxin in Peucedanum Japonicum Thunb in RAW264.7 Macrophage Cells
title_fullStr Induction of Antioxidant Protein HO-1 Through Nrf2-ARE Signaling Due to Pteryxin in Peucedanum Japonicum Thunb in RAW264.7 Macrophage Cells
title_full_unstemmed Induction of Antioxidant Protein HO-1 Through Nrf2-ARE Signaling Due to Pteryxin in Peucedanum Japonicum Thunb in RAW264.7 Macrophage Cells
title_short Induction of Antioxidant Protein HO-1 Through Nrf2-ARE Signaling Due to Pteryxin in Peucedanum Japonicum Thunb in RAW264.7 Macrophage Cells
title_sort induction of antioxidant protein ho-1 through nrf2-are signaling due to pteryxin in peucedanum japonicum thunb in raw264.7 macrophage cells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943564/
https://www.ncbi.nlm.nih.gov/pubmed/31817423
http://dx.doi.org/10.3390/antiox8120621
work_keys_str_mv AT tairajunsei inductionofantioxidantproteinho1throughnrf2aresignalingduetopteryxininpeucedanumjaponicumthunbinraw2647macrophagecells
AT ogitakayuki inductionofantioxidantproteinho1throughnrf2aresignalingduetopteryxininpeucedanumjaponicumthunbinraw2647macrophagecells