Cargando…
Chiral Chalcogen Bond Donors Based on the 4,4′-Bipyridine Scaffold
Organocatalysis through chalcogen bonding (ChB) is in its infancy, as its proof-of-principle was only reported in 2016. Herein, we report the design and synthesis of new chiral ChB donors, as well as the catalytic activity evaluation of the 5,5′-dibromo-2,2′-dichloro-3-((perfluorophenyl)selanyl)-4,4...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943643/ https://www.ncbi.nlm.nih.gov/pubmed/31817814 http://dx.doi.org/10.3390/molecules24244484 |
_version_ | 1783484922792509440 |
---|---|
author | Weiss, Robin Aubert, Emmanuel Peluso, Paola Cossu, Sergio Pale, Patrick Mamane, Victor |
author_facet | Weiss, Robin Aubert, Emmanuel Peluso, Paola Cossu, Sergio Pale, Patrick Mamane, Victor |
author_sort | Weiss, Robin |
collection | PubMed |
description | Organocatalysis through chalcogen bonding (ChB) is in its infancy, as its proof-of-principle was only reported in 2016. Herein, we report the design and synthesis of new chiral ChB donors, as well as the catalytic activity evaluation of the 5,5′-dibromo-2,2′-dichloro-3-((perfluorophenyl)selanyl)-4,4′-bipyridine as organocatalyst. The latter is based on the use of two electron-withdrawing groups, a pentafluorophenyl ring and a tetrahalo-4,4′-bipyridine skeleton, as substituents at the selenium center. Atropisomery of the tetrahalo-4,4′-bipyridine motif provides a chiral environment to these new ChB donors. Their synthesis was achieved through either selective lithium exchange and trapping or a site-selective copper-mediated reaction. Pure enantiomers of the 3-selanyl-4,4′-bipyridine were obtained by high performance liquid chromatography enantioseparation on specific chiral stationary phase, and their absolute configuration was assigned by comparison of the measured and calculated electronic circular dichroism spectra. The capability of the selenium compound to participate in σ-hole-based interactions in solution was studied by (19)F NMR. Even if no asymmetric induction has been observed so far, the new selenium motif proved to be catalytically active in the reduction of 2-phenylquinoline by Hantzsch ester. |
format | Online Article Text |
id | pubmed-6943643 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69436432020-01-10 Chiral Chalcogen Bond Donors Based on the 4,4′-Bipyridine Scaffold Weiss, Robin Aubert, Emmanuel Peluso, Paola Cossu, Sergio Pale, Patrick Mamane, Victor Molecules Article Organocatalysis through chalcogen bonding (ChB) is in its infancy, as its proof-of-principle was only reported in 2016. Herein, we report the design and synthesis of new chiral ChB donors, as well as the catalytic activity evaluation of the 5,5′-dibromo-2,2′-dichloro-3-((perfluorophenyl)selanyl)-4,4′-bipyridine as organocatalyst. The latter is based on the use of two electron-withdrawing groups, a pentafluorophenyl ring and a tetrahalo-4,4′-bipyridine skeleton, as substituents at the selenium center. Atropisomery of the tetrahalo-4,4′-bipyridine motif provides a chiral environment to these new ChB donors. Their synthesis was achieved through either selective lithium exchange and trapping or a site-selective copper-mediated reaction. Pure enantiomers of the 3-selanyl-4,4′-bipyridine were obtained by high performance liquid chromatography enantioseparation on specific chiral stationary phase, and their absolute configuration was assigned by comparison of the measured and calculated electronic circular dichroism spectra. The capability of the selenium compound to participate in σ-hole-based interactions in solution was studied by (19)F NMR. Even if no asymmetric induction has been observed so far, the new selenium motif proved to be catalytically active in the reduction of 2-phenylquinoline by Hantzsch ester. MDPI 2019-12-06 /pmc/articles/PMC6943643/ /pubmed/31817814 http://dx.doi.org/10.3390/molecules24244484 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Weiss, Robin Aubert, Emmanuel Peluso, Paola Cossu, Sergio Pale, Patrick Mamane, Victor Chiral Chalcogen Bond Donors Based on the 4,4′-Bipyridine Scaffold |
title | Chiral Chalcogen Bond Donors Based on the 4,4′-Bipyridine Scaffold |
title_full | Chiral Chalcogen Bond Donors Based on the 4,4′-Bipyridine Scaffold |
title_fullStr | Chiral Chalcogen Bond Donors Based on the 4,4′-Bipyridine Scaffold |
title_full_unstemmed | Chiral Chalcogen Bond Donors Based on the 4,4′-Bipyridine Scaffold |
title_short | Chiral Chalcogen Bond Donors Based on the 4,4′-Bipyridine Scaffold |
title_sort | chiral chalcogen bond donors based on the 4,4′-bipyridine scaffold |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943643/ https://www.ncbi.nlm.nih.gov/pubmed/31817814 http://dx.doi.org/10.3390/molecules24244484 |
work_keys_str_mv | AT weissrobin chiralchalcogenbonddonorsbasedonthe44bipyridinescaffold AT aubertemmanuel chiralchalcogenbonddonorsbasedonthe44bipyridinescaffold AT pelusopaola chiralchalcogenbonddonorsbasedonthe44bipyridinescaffold AT cossusergio chiralchalcogenbonddonorsbasedonthe44bipyridinescaffold AT palepatrick chiralchalcogenbonddonorsbasedonthe44bipyridinescaffold AT mamanevictor chiralchalcogenbonddonorsbasedonthe44bipyridinescaffold |