Cargando…
Anti-Biofilm Effects of Synthetic Antimicrobial Peptides Against Drug-Resistant Pseudomonas aeruginosa and Staphylococcus aureus Planktonic Cells and Biofilm
Biofilm-associated infections are difficult to manage or treat as biofilms or biofilm-embedded bacteria are difficult to eradicate. Antimicrobial peptides have gained increasing attention as a possible alternative to conventional drugs to combat drug-resistant microorganisms because they inhibit the...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943720/ https://www.ncbi.nlm.nih.gov/pubmed/31842508 http://dx.doi.org/10.3390/molecules24244560 |
Sumario: | Biofilm-associated infections are difficult to manage or treat as biofilms or biofilm-embedded bacteria are difficult to eradicate. Antimicrobial peptides have gained increasing attention as a possible alternative to conventional drugs to combat drug-resistant microorganisms because they inhibit the growth of planktonic bacteria by disrupting the cytoplasmic membrane. The current study investigated the effects of synthetic peptides (PS1-2, PS1-5, and PS1-6) and conventional antibiotics on the growth, biofilm formation, and biofilm reduction of drug-resistant Pseudomonas aeruginosa and Staphylococcus aureus. The effects of PS1-2, PS1-5, and PS1-6 were also tested in vivo using a mouse model. All peptides inhibited planktonic cell growth and biofilm formation in a dose-dependent manner. They also reduced preformed biofilm masses by removing the carbohydrates, extracellular DNA, and lipids that comprised extracellular polymeric substances (EPSs) but did not affect proteins. In vivo, PS1-2 showed the greatest efficacy against preformed biofilms with no cytotoxicity. Our findings indicate that the PS1-2 peptide has potential as a next-generation therapeutic drug to overcome multidrug resistance and to regulate inflammatory response in biofilm-associated infections. |
---|