Cargando…
Identification of Cognitive Dysfunction in Patients with T2DM Using Whole Brain Functional Connectivity
Majority of type 2 diabetes mellitus (T2DM) patients are highly susceptible to several forms of cognitive impairments, particularly dementia. However, the underlying neural mechanism of these cognitive impairments remains unclear. We aimed to investigate the correlation between whole brain resting s...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943769/ https://www.ncbi.nlm.nih.gov/pubmed/31786312 http://dx.doi.org/10.1016/j.gpb.2019.09.002 |
_version_ | 1783484949134835712 |
---|---|
author | Liu, Zhenyu Liu, Jiangang Yuan, Huijuan Liu, Taiyuan Cui, Xingwei Tang, Zhenchao Du, Yang Wang, Meiyun Lin, Yusong Tian, Jie |
author_facet | Liu, Zhenyu Liu, Jiangang Yuan, Huijuan Liu, Taiyuan Cui, Xingwei Tang, Zhenchao Du, Yang Wang, Meiyun Lin, Yusong Tian, Jie |
author_sort | Liu, Zhenyu |
collection | PubMed |
description | Majority of type 2 diabetes mellitus (T2DM) patients are highly susceptible to several forms of cognitive impairments, particularly dementia. However, the underlying neural mechanism of these cognitive impairments remains unclear. We aimed to investigate the correlation between whole brain resting state functional connections (RSFCs) and the cognitive status in 95 patients with T2DM. We constructed an elastic net model to estimate the Montreal Cognitive Assessment (MoCA) scores, which served as an index of the cognitive status of the patients, and to select the RSFCs for further prediction. Subsequently, we utilized a machine learning technique to evaluate the discriminative ability of the connectivity pattern associated with the selected RSFCs. The estimated and chronological MoCA scores were significantly correlated with R = 0.81 and the mean absolute error (MAE) = 1.20. Additionally, cognitive impairments of patients with T2DM can be identified using the RSFC pattern with classification accuracy of 90.54% and the area under the receiver operating characteristic (ROC) curve (AUC) of 0.9737. This connectivity pattern not only included the connections between regions within the default mode network (DMN), but also the functional connectivity between the task-positive networks and the DMN, as well as those within the task-positive networks. The results suggest that an RSFC pattern could be regarded as a potential biomarker to identify the cognitive status of patients with T2DM. |
format | Online Article Text |
id | pubmed-6943769 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-69437692020-01-09 Identification of Cognitive Dysfunction in Patients with T2DM Using Whole Brain Functional Connectivity Liu, Zhenyu Liu, Jiangang Yuan, Huijuan Liu, Taiyuan Cui, Xingwei Tang, Zhenchao Du, Yang Wang, Meiyun Lin, Yusong Tian, Jie Genomics Proteomics Bioinformatics Original research Majority of type 2 diabetes mellitus (T2DM) patients are highly susceptible to several forms of cognitive impairments, particularly dementia. However, the underlying neural mechanism of these cognitive impairments remains unclear. We aimed to investigate the correlation between whole brain resting state functional connections (RSFCs) and the cognitive status in 95 patients with T2DM. We constructed an elastic net model to estimate the Montreal Cognitive Assessment (MoCA) scores, which served as an index of the cognitive status of the patients, and to select the RSFCs for further prediction. Subsequently, we utilized a machine learning technique to evaluate the discriminative ability of the connectivity pattern associated with the selected RSFCs. The estimated and chronological MoCA scores were significantly correlated with R = 0.81 and the mean absolute error (MAE) = 1.20. Additionally, cognitive impairments of patients with T2DM can be identified using the RSFC pattern with classification accuracy of 90.54% and the area under the receiver operating characteristic (ROC) curve (AUC) of 0.9737. This connectivity pattern not only included the connections between regions within the default mode network (DMN), but also the functional connectivity between the task-positive networks and the DMN, as well as those within the task-positive networks. The results suggest that an RSFC pattern could be regarded as a potential biomarker to identify the cognitive status of patients with T2DM. Elsevier 2019-08 2019-11-28 /pmc/articles/PMC6943769/ /pubmed/31786312 http://dx.doi.org/10.1016/j.gpb.2019.09.002 Text en © 2019 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Original research Liu, Zhenyu Liu, Jiangang Yuan, Huijuan Liu, Taiyuan Cui, Xingwei Tang, Zhenchao Du, Yang Wang, Meiyun Lin, Yusong Tian, Jie Identification of Cognitive Dysfunction in Patients with T2DM Using Whole Brain Functional Connectivity |
title | Identification of Cognitive Dysfunction in Patients with T2DM Using Whole Brain Functional Connectivity |
title_full | Identification of Cognitive Dysfunction in Patients with T2DM Using Whole Brain Functional Connectivity |
title_fullStr | Identification of Cognitive Dysfunction in Patients with T2DM Using Whole Brain Functional Connectivity |
title_full_unstemmed | Identification of Cognitive Dysfunction in Patients with T2DM Using Whole Brain Functional Connectivity |
title_short | Identification of Cognitive Dysfunction in Patients with T2DM Using Whole Brain Functional Connectivity |
title_sort | identification of cognitive dysfunction in patients with t2dm using whole brain functional connectivity |
topic | Original research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943769/ https://www.ncbi.nlm.nih.gov/pubmed/31786312 http://dx.doi.org/10.1016/j.gpb.2019.09.002 |
work_keys_str_mv | AT liuzhenyu identificationofcognitivedysfunctioninpatientswitht2dmusingwholebrainfunctionalconnectivity AT liujiangang identificationofcognitivedysfunctioninpatientswitht2dmusingwholebrainfunctionalconnectivity AT yuanhuijuan identificationofcognitivedysfunctioninpatientswitht2dmusingwholebrainfunctionalconnectivity AT liutaiyuan identificationofcognitivedysfunctioninpatientswitht2dmusingwholebrainfunctionalconnectivity AT cuixingwei identificationofcognitivedysfunctioninpatientswitht2dmusingwholebrainfunctionalconnectivity AT tangzhenchao identificationofcognitivedysfunctioninpatientswitht2dmusingwholebrainfunctionalconnectivity AT duyang identificationofcognitivedysfunctioninpatientswitht2dmusingwholebrainfunctionalconnectivity AT wangmeiyun identificationofcognitivedysfunctioninpatientswitht2dmusingwholebrainfunctionalconnectivity AT linyusong identificationofcognitivedysfunctioninpatientswitht2dmusingwholebrainfunctionalconnectivity AT tianjie identificationofcognitivedysfunctioninpatientswitht2dmusingwholebrainfunctionalconnectivity |