Cargando…

PsyMuKB: An Integrative De Novo Variant Knowledge Base for Developmental Disorders

De novo variants (DNVs) are one of the most significant contributors to severe early-onset genetic disorders such as autism spectrum disorder, intellectual disability, and other developmental and neuropsychiatric (DNP) disorders. Presently, a plethora of DNVs have been identified using next-generati...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Guan Ning, Guo, Sijia, Tan, Xian, Wang, Weidi, Qian, Wei, Song, Weichen, Wang, Jingru, Yu, Shunying, Wang, Zhen, Cui, Donghong, Wang, Han
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943783/
https://www.ncbi.nlm.nih.gov/pubmed/31809863
http://dx.doi.org/10.1016/j.gpb.2019.10.002
Descripción
Sumario:De novo variants (DNVs) are one of the most significant contributors to severe early-onset genetic disorders such as autism spectrum disorder, intellectual disability, and other developmental and neuropsychiatric (DNP) disorders. Presently, a plethora of DNVs have been identified using next-generation sequencing, and many efforts have been made to understand their impact at the gene level. However, there has been little exploration of the effects at the isoform level. The brain contains a high level of alternative splicing and regulation, and exhibits a more divergent splicing program than other tissues. Therefore, it is crucial to explore variants at the transcriptional regulation level to better interpret the mechanisms underlying DNP disorders. To facilitate a better usage and improve the isoform-level interpretation of variants, we developed NeuroPsychiatric Mutation Knowledge Base (PsyMuKB). It contains a comprehensive, carefully curated list of DNVs with transcriptional and translational annotations to enable identification of isoform-specific mutations. PsyMuKB allows a flexible search of genes or variants and provides both table-based descriptions and associated visualizations, such as expression, transcript genomic structures, protein interactions, and the mutation sites mapped on the protein structures. It also provides an easy-to-use web interface, allowing users to rapidly visualize the locations and characteristics of mutations and the expression patterns of the impacted genes and isoforms. PsyMuKB thus constitutes a valuable resource for identifying tissue-specific DNVs for further functional studies of related disorders. PsyMuKB is freely accessible at http://psymukb.net.