Cargando…
The extension of the largest generalized-eigenvalue based distance metric D(ij)(γ(1)) in arbitrary feature spaces to classify composite data points
Analyzing patterns in data points embedded in linear and non-linear feature spaces is considered as one of the common research problems among different research areas, for example: data mining, machine learning, pattern recognition, and multivariate analysis. In this paper, data points are heterogen...
Autor principal: | Daoud, Mosaab |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korea Genome Organization
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6944050/ https://www.ncbi.nlm.nih.gov/pubmed/31896239 http://dx.doi.org/10.5808/GI.2019.17.4.e39 |
Ejemplares similares
-
A note on the distance distribution paradigm for Mosaab-metric to process segmented genomes of influenza virus
por: Daoud, Mosaab
Publicado: (2020) -
Insights of window-bsed mechanism approach to visualize composite bioData point in feature spaces
por: Daoud, Mosaab
Publicado: (2019) -
Properties of translation operator and the solution of the eigenvalue and boundary value problems of arbitrary space–time periodic metamaterials
por: Elnaggar, Sameh Y., et al.
Publicado: (2021) -
On the Eigenvalues of the Fermionic Angular Eigenfunctions in the Kerr Metric
por: Batic, Davide, et al.
Publicado: (2022) -
Convergence Rate to the Tracy–Widom Laws for the Largest Eigenvalue of Wigner Matrices
por: Schnelli, Kevin, et al.
Publicado: (2022)