Cargando…
On a Monotone Scheme for Nonconvex Nonsmooth Optimization with Applications to Fracture Mechanics
A general class of nonconvex optimization problems is considered, where the penalty is the composition of a linear operator with a nonsmooth nonconvex mapping, which is concave on the positive real line. The necessary optimality condition of a regularized version of the original problem is solved by...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6944259/ https://www.ncbi.nlm.nih.gov/pubmed/31975742 http://dx.doi.org/10.1007/s10957-019-01545-4 |
Sumario: | A general class of nonconvex optimization problems is considered, where the penalty is the composition of a linear operator with a nonsmooth nonconvex mapping, which is concave on the positive real line. The necessary optimality condition of a regularized version of the original problem is solved by means of a monotonically convergent scheme. Such problems arise in continuum mechanics, as for instance cohesive fractures, where singular behaviour is usually modelled by nonsmooth nonconvex energies. The proposed algorithm is successfully tested for fracture mechanics problems. Its performance is also compared to two alternative algorithms for nonsmooth nonconvex optimization arising in optimal control and mathematical imaging. |
---|