Cargando…
The future is not always open
We demonstrate the breakdown of several fundamentals of Lorentzian causality theory in low regularity. Most notably, chronological futures (defined naturally using locally Lipschitz curves) may be non-open and may differ from the corresponding sets defined via piecewise [Formula: see text] -curves....
Autores principales: | Grant, James D. E., Kunzinger, Michael, Sämann, Clemens, Steinbauer, Roland |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6944269/ https://www.ncbi.nlm.nih.gov/pubmed/31975745 http://dx.doi.org/10.1007/s11005-019-01213-8 |
Ejemplares similares
-
Inextendibility of spacetimes and Lorentzian length spaces
por: Grant, James D. E., et al.
Publicado: (2018) -
Lorentzian length spaces
por: Kunzinger, Michael, et al.
Publicado: (2018) -
Null Distance and Convergence of Lorentzian Length Spaces
por: Kunzinger, Michael, et al.
Publicado: (2022) -
Geometric theory of generalized functions with applications to general relativity
por: Grosser, Michael, et al.
Publicado: (2001) -
On the foundations of nonlinear generalized functions I and II
por: Gros, Michael, et al.
Publicado: (2001)