Cargando…

Systems-level analysis of NalD mutation, a recurrent driver of rapid drug resistance in acute Pseudomonas aeruginosa infection

Pseudomonas aeruginosa, a main cause of human infection, can gain resistance to the antibiotic aztreonam through a mutation in NalD, a transcriptional repressor of cellular efflux. Here we combine computational analysis of clinical isolates, transcriptomics, metabolic modeling and experimental valid...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Jinyuan, Estanbouli, Henri, Liao, Chen, Kim, Wook, Monk, Jonathan M., Rahman, Rayees, Kamboj, Mini, Palsson, Bernhard O., Qiu, Weigang, Xavier, Joao B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6944390/
https://www.ncbi.nlm.nih.gov/pubmed/31860667
http://dx.doi.org/10.1371/journal.pcbi.1007562
_version_ 1783485030816808960
author Yan, Jinyuan
Estanbouli, Henri
Liao, Chen
Kim, Wook
Monk, Jonathan M.
Rahman, Rayees
Kamboj, Mini
Palsson, Bernhard O.
Qiu, Weigang
Xavier, Joao B.
author_facet Yan, Jinyuan
Estanbouli, Henri
Liao, Chen
Kim, Wook
Monk, Jonathan M.
Rahman, Rayees
Kamboj, Mini
Palsson, Bernhard O.
Qiu, Weigang
Xavier, Joao B.
author_sort Yan, Jinyuan
collection PubMed
description Pseudomonas aeruginosa, a main cause of human infection, can gain resistance to the antibiotic aztreonam through a mutation in NalD, a transcriptional repressor of cellular efflux. Here we combine computational analysis of clinical isolates, transcriptomics, metabolic modeling and experimental validation to find a strong association between NalD mutations and resistance to aztreonam—as well as resistance to other antibiotics—across P. aeruginosa isolated from different patients. A detailed analysis of one patient’s timeline shows how this mutation can emerge in vivo and drive rapid evolution of resistance while the patient received cancer treatment, a bone marrow transplantation, and antibiotics up to the point of causing the patient’s death. Transcriptomics analysis confirmed the primary mechanism of NalD action—a loss-of-function mutation that caused constitutive overexpression of the MexAB-OprM efflux system—which lead to aztreonam resistance but, surprisingly, had no fitness cost in the absence of the antibiotic. We constrained a genome-scale metabolic model using the transcriptomics data to investigate changes beyond the primary mechanism of resistance, including adaptations in major metabolic pathways and membrane transport concurrent with aztreonam resistance, which may explain the lack of a fitness cost. We propose that metabolic adaptations may allow resistance mutations to endure in the absence of antibiotics and could be targeted by future therapies against antibiotic resistant pathogens.
format Online
Article
Text
id pubmed-6944390
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-69443902020-01-17 Systems-level analysis of NalD mutation, a recurrent driver of rapid drug resistance in acute Pseudomonas aeruginosa infection Yan, Jinyuan Estanbouli, Henri Liao, Chen Kim, Wook Monk, Jonathan M. Rahman, Rayees Kamboj, Mini Palsson, Bernhard O. Qiu, Weigang Xavier, Joao B. PLoS Comput Biol Research Article Pseudomonas aeruginosa, a main cause of human infection, can gain resistance to the antibiotic aztreonam through a mutation in NalD, a transcriptional repressor of cellular efflux. Here we combine computational analysis of clinical isolates, transcriptomics, metabolic modeling and experimental validation to find a strong association between NalD mutations and resistance to aztreonam—as well as resistance to other antibiotics—across P. aeruginosa isolated from different patients. A detailed analysis of one patient’s timeline shows how this mutation can emerge in vivo and drive rapid evolution of resistance while the patient received cancer treatment, a bone marrow transplantation, and antibiotics up to the point of causing the patient’s death. Transcriptomics analysis confirmed the primary mechanism of NalD action—a loss-of-function mutation that caused constitutive overexpression of the MexAB-OprM efflux system—which lead to aztreonam resistance but, surprisingly, had no fitness cost in the absence of the antibiotic. We constrained a genome-scale metabolic model using the transcriptomics data to investigate changes beyond the primary mechanism of resistance, including adaptations in major metabolic pathways and membrane transport concurrent with aztreonam resistance, which may explain the lack of a fitness cost. We propose that metabolic adaptations may allow resistance mutations to endure in the absence of antibiotics and could be targeted by future therapies against antibiotic resistant pathogens. Public Library of Science 2019-12-20 /pmc/articles/PMC6944390/ /pubmed/31860667 http://dx.doi.org/10.1371/journal.pcbi.1007562 Text en © 2019 Yan et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Yan, Jinyuan
Estanbouli, Henri
Liao, Chen
Kim, Wook
Monk, Jonathan M.
Rahman, Rayees
Kamboj, Mini
Palsson, Bernhard O.
Qiu, Weigang
Xavier, Joao B.
Systems-level analysis of NalD mutation, a recurrent driver of rapid drug resistance in acute Pseudomonas aeruginosa infection
title Systems-level analysis of NalD mutation, a recurrent driver of rapid drug resistance in acute Pseudomonas aeruginosa infection
title_full Systems-level analysis of NalD mutation, a recurrent driver of rapid drug resistance in acute Pseudomonas aeruginosa infection
title_fullStr Systems-level analysis of NalD mutation, a recurrent driver of rapid drug resistance in acute Pseudomonas aeruginosa infection
title_full_unstemmed Systems-level analysis of NalD mutation, a recurrent driver of rapid drug resistance in acute Pseudomonas aeruginosa infection
title_short Systems-level analysis of NalD mutation, a recurrent driver of rapid drug resistance in acute Pseudomonas aeruginosa infection
title_sort systems-level analysis of nald mutation, a recurrent driver of rapid drug resistance in acute pseudomonas aeruginosa infection
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6944390/
https://www.ncbi.nlm.nih.gov/pubmed/31860667
http://dx.doi.org/10.1371/journal.pcbi.1007562
work_keys_str_mv AT yanjinyuan systemslevelanalysisofnaldmutationarecurrentdriverofrapiddrugresistanceinacutepseudomonasaeruginosainfection
AT estanboulihenri systemslevelanalysisofnaldmutationarecurrentdriverofrapiddrugresistanceinacutepseudomonasaeruginosainfection
AT liaochen systemslevelanalysisofnaldmutationarecurrentdriverofrapiddrugresistanceinacutepseudomonasaeruginosainfection
AT kimwook systemslevelanalysisofnaldmutationarecurrentdriverofrapiddrugresistanceinacutepseudomonasaeruginosainfection
AT monkjonathanm systemslevelanalysisofnaldmutationarecurrentdriverofrapiddrugresistanceinacutepseudomonasaeruginosainfection
AT rahmanrayees systemslevelanalysisofnaldmutationarecurrentdriverofrapiddrugresistanceinacutepseudomonasaeruginosainfection
AT kambojmini systemslevelanalysisofnaldmutationarecurrentdriverofrapiddrugresistanceinacutepseudomonasaeruginosainfection
AT palssonbernhardo systemslevelanalysisofnaldmutationarecurrentdriverofrapiddrugresistanceinacutepseudomonasaeruginosainfection
AT qiuweigang systemslevelanalysisofnaldmutationarecurrentdriverofrapiddrugresistanceinacutepseudomonasaeruginosainfection
AT xavierjoaob systemslevelanalysisofnaldmutationarecurrentdriverofrapiddrugresistanceinacutepseudomonasaeruginosainfection