Cargando…
Deep learning based image reconstruction algorithm for limited-angle translational computed tomography
As a low-end computed tomography (CT) system, translational CT (TCT) is in urgent demand in developing countries. Under some circumstances, in order to reduce the scan time, decrease the X-ray radiation or scan long objects, furthermore, to avoid the inconsistency of the detector for the large angle...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6944462/ https://www.ncbi.nlm.nih.gov/pubmed/31905225 http://dx.doi.org/10.1371/journal.pone.0226963 |
Sumario: | As a low-end computed tomography (CT) system, translational CT (TCT) is in urgent demand in developing countries. Under some circumstances, in order to reduce the scan time, decrease the X-ray radiation or scan long objects, furthermore, to avoid the inconsistency of the detector for the large angle scanning, we use the limited-angle TCT scanning mode to scan an object within a limited angular range. However, this scanning mode introduces some additional noise and limited-angle artifacts that seriously degrade the imaging quality and affect the diagnosis accuracy. To reconstruct a high-quality image for the limited-angle TCT scanning mode, we develop a limited-angle TCT image reconstruction algorithm based on a U-net convolutional neural network (CNN). First, we use the SART method to the limited-angle TCT projection data, then we import the image reconstructed by SART method to a well-trained CNN which can suppress the artifacts and preserve the structures to obtain a better reconstructed image. Some simulation experiments are implemented to demonstrate the performance of the developed algorithm for the limited-angle TCT scanning mode. Compared with some state-of-the-art methods, the developed algorithm can effectively suppress the noise and the limited-angle artifacts while preserving the image structures. |
---|