Cargando…

Deep learning based image reconstruction algorithm for limited-angle translational computed tomography

As a low-end computed tomography (CT) system, translational CT (TCT) is in urgent demand in developing countries. Under some circumstances, in order to reduce the scan time, decrease the X-ray radiation or scan long objects, furthermore, to avoid the inconsistency of the detector for the large angle...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jiaxi, Liang, Jun, Cheng, Jingye, Guo, Yumeng, Zeng, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6944462/
https://www.ncbi.nlm.nih.gov/pubmed/31905225
http://dx.doi.org/10.1371/journal.pone.0226963
Descripción
Sumario:As a low-end computed tomography (CT) system, translational CT (TCT) is in urgent demand in developing countries. Under some circumstances, in order to reduce the scan time, decrease the X-ray radiation or scan long objects, furthermore, to avoid the inconsistency of the detector for the large angle scanning, we use the limited-angle TCT scanning mode to scan an object within a limited angular range. However, this scanning mode introduces some additional noise and limited-angle artifacts that seriously degrade the imaging quality and affect the diagnosis accuracy. To reconstruct a high-quality image for the limited-angle TCT scanning mode, we develop a limited-angle TCT image reconstruction algorithm based on a U-net convolutional neural network (CNN). First, we use the SART method to the limited-angle TCT projection data, then we import the image reconstructed by SART method to a well-trained CNN which can suppress the artifacts and preserve the structures to obtain a better reconstructed image. Some simulation experiments are implemented to demonstrate the performance of the developed algorithm for the limited-angle TCT scanning mode. Compared with some state-of-the-art methods, the developed algorithm can effectively suppress the noise and the limited-angle artifacts while preserving the image structures.