Cargando…

Engineering Epitaxial Silicene on Functional Substrates for Nanotechnology

Two-dimensional materials are today a solid reality in condensed matter physics due to the disruptive discoveries about graphene. The class of the X-enes, namely, graphene-like single element artificial crystals, is quickly emerging driven by the high-momentum generated by silicene. Silicene, in add...

Descripción completa

Detalles Bibliográficos
Autores principales: Grazianetti, Carlo, Molle, Alessandro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AAAS 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6944516/
https://www.ncbi.nlm.nih.gov/pubmed/31912047
http://dx.doi.org/10.34133/2019/8494606
_version_ 1783485043615727616
author Grazianetti, Carlo
Molle, Alessandro
author_facet Grazianetti, Carlo
Molle, Alessandro
author_sort Grazianetti, Carlo
collection PubMed
description Two-dimensional materials are today a solid reality in condensed matter physics due to the disruptive discoveries about graphene. The class of the X-enes, namely, graphene-like single element artificial crystals, is quickly emerging driven by the high-momentum generated by silicene. Silicene, in addition to the graphene properties, shows up incidentally at the end of Moore's law debate in the electronic era. Indeed, silicene occurs as the crafted shrunk version of silicon long yearned by device manufacturers to improve the performances of their chips. Despite the periodic table kinship with graphene, silicene and the X-enes must deal with the twofold problem of their metastable nature, i.e., the stabilization on a substrate and out of vacuum environment. Synthesis on different substrates and deep characterization through electronic and optical techniques of silicene in the early days have been now following by the tentative steps towards reliable integration of silicene into devices. Here, we review three paradigmatic cases of silicene grown by molecular beam epitaxy showing three different possible applications, aiming at extending the exploitation of silicene out of the nanoelectronics field and thus keeping silicon a key player in nanotechnology, just in a thinner fashion.
format Online
Article
Text
id pubmed-6944516
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher AAAS
record_format MEDLINE/PubMed
spelling pubmed-69445162020-01-07 Engineering Epitaxial Silicene on Functional Substrates for Nanotechnology Grazianetti, Carlo Molle, Alessandro Research (Wash D C) Review Article Two-dimensional materials are today a solid reality in condensed matter physics due to the disruptive discoveries about graphene. The class of the X-enes, namely, graphene-like single element artificial crystals, is quickly emerging driven by the high-momentum generated by silicene. Silicene, in addition to the graphene properties, shows up incidentally at the end of Moore's law debate in the electronic era. Indeed, silicene occurs as the crafted shrunk version of silicon long yearned by device manufacturers to improve the performances of their chips. Despite the periodic table kinship with graphene, silicene and the X-enes must deal with the twofold problem of their metastable nature, i.e., the stabilization on a substrate and out of vacuum environment. Synthesis on different substrates and deep characterization through electronic and optical techniques of silicene in the early days have been now following by the tentative steps towards reliable integration of silicene into devices. Here, we review three paradigmatic cases of silicene grown by molecular beam epitaxy showing three different possible applications, aiming at extending the exploitation of silicene out of the nanoelectronics field and thus keeping silicon a key player in nanotechnology, just in a thinner fashion. AAAS 2019-09-12 /pmc/articles/PMC6944516/ /pubmed/31912047 http://dx.doi.org/10.34133/2019/8494606 Text en Copyright © 2019 Carlo Grazianetti and Alessandro Molle. http://creativecommons.org/licenses/by/4.0/ Exclusive Licensee Science and Technology Review Publishing House. Distributed under a Creative Commons Attribution License (CC BY 4.0).
spellingShingle Review Article
Grazianetti, Carlo
Molle, Alessandro
Engineering Epitaxial Silicene on Functional Substrates for Nanotechnology
title Engineering Epitaxial Silicene on Functional Substrates for Nanotechnology
title_full Engineering Epitaxial Silicene on Functional Substrates for Nanotechnology
title_fullStr Engineering Epitaxial Silicene on Functional Substrates for Nanotechnology
title_full_unstemmed Engineering Epitaxial Silicene on Functional Substrates for Nanotechnology
title_short Engineering Epitaxial Silicene on Functional Substrates for Nanotechnology
title_sort engineering epitaxial silicene on functional substrates for nanotechnology
topic Review Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6944516/
https://www.ncbi.nlm.nih.gov/pubmed/31912047
http://dx.doi.org/10.34133/2019/8494606
work_keys_str_mv AT grazianetticarlo engineeringepitaxialsiliceneonfunctionalsubstratesfornanotechnology
AT mollealessandro engineeringepitaxialsiliceneonfunctionalsubstratesfornanotechnology