Cargando…
Computational identification of vesicular transport proteins from sequences using deep gated recurrent units architecture
Protein function prediction is one of the most well-studied topics, attracting attention from countless researchers in the field of computational biology. Implementing deep neural networks that help improve the prediction of protein function, however, is still a major challenge. In this research, we...
Autores principales: | Le, Nguyen Quoc Khanh, Yapp, Edward Kien Yee, Nagasundaram, N., Chua, Matthew Chin Heng, Yeh, Hui-Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6944713/ https://www.ncbi.nlm.nih.gov/pubmed/31921391 http://dx.doi.org/10.1016/j.csbj.2019.09.005 |
Ejemplares similares
-
ET-GRU: using multi-layer gated recurrent units to identify electron transport proteins
por: Le, Nguyen Quoc Khanh, et al.
Publicado: (2019) -
Classifying Promoters by Interpreting the Hidden Information of DNA Sequences via Deep Learning and Combination of Continuous FastText N-Grams
por: Le, Nguyen Quoc Khanh, et al.
Publicado: (2019) -
Improved Prediction
Model of Protein and Peptide Toxicity
by Integrating Channel Attention into a Convolutional Neural Network
and Gated Recurrent Units
por: Zhao, Zhengyun, et al.
Publicado: (2022) -
Ensemble of Deep Recurrent Neural Networks for Identifying Enhancers via Dinucleotide Physicochemical Properties
por: Tan, Kok Keng, et al.
Publicado: (2019) -
Application of Computational Biology and Artificial Intelligence Technologies in Cancer Precision Drug Discovery
por: Nagarajan, Nagasundaram, et al.
Publicado: (2019)