Cargando…
Convolution neural network–based Alzheimer's disease classification using hybrid enhanced independent component analysis based segmented gray matter of T2 weighted magnetic resonance imaging with clinical valuation
In recent times, accurate and early diagnosis of Alzheimer's disease (AD) plays a vital role in patient care and further treatment. Predicting AD from mild cognitive impairment (MCI) and cognitive normal (CN) has become popular. Neuroimaging and computer-aided diagnosis techniques are used for...
Autores principales: | Basheera, Shaik, Sai Ram, M Satya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6944731/ https://www.ncbi.nlm.nih.gov/pubmed/31921971 http://dx.doi.org/10.1016/j.trci.2019.10.001 |
Ejemplares similares
-
Spinal cord gray matter segmentation using deep dilated convolutions
por: Perone, Christian S., et al.
Publicado: (2018) -
Multilevel Thresholding Method Based on Electromagnetism for Accurate Brain MRI Segmentation to Detect White Matter, Gray Matter, and CSF
por: Sandhya, G., et al.
Publicado: (2017) -
Global gray matter changes in posterior cortical atrophy: A serial imaging study
por: Lehmann, Manja, et al.
Publicado: (2012) -
The protective gene dose effect of the APOE
ε2 allele on gray matter volume in cognitively unimpaired individuals
por: Salvadó, Gemma, et al.
Publicado: (2021) -
Functional connectivity between white matter and gray matter based on fMRI for Alzheimer's disease classification
por: Zhao, Jie, et al.
Publicado: (2019)