Cargando…
Hydroxysafflor Yellow A Inhibits TNF-α-Induced Inflammation of Human Fetal Lung Fibroblasts via NF-κB Signaling Pathway
OBJECTIVE: Hydroxysafflor yellow A (HSYA), an effective ingredient of the Chinese herb Carthamus tinctorius L, attenuated bleomycin-induced pulmonary fibrosis in mice. This study is to investigate the effect of HSYA on the proliferation and inflammatory level of human fetal lung fibroblasts (MRC-5 c...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6944954/ https://www.ncbi.nlm.nih.gov/pubmed/31949467 http://dx.doi.org/10.1155/2019/4050327 |
Sumario: | OBJECTIVE: Hydroxysafflor yellow A (HSYA), an effective ingredient of the Chinese herb Carthamus tinctorius L, attenuated bleomycin-induced pulmonary fibrosis in mice. This study is to investigate the effect of HSYA on the proliferation and inflammatory level of human fetal lung fibroblasts (MRC-5 cells) induced by tumor necrosis factor-α (TNF-α) and explore the underlying mechanisms. METHODS: MRC-5 cells were treated with different concentrations of TNF-α, HSYA, or/and etanercept (ENCP, TNF-α receptor (TNFR1) antagonist, 500 ng/mL) before cell proliferation was detected. The laser confocal microscope was used to observe the role of HSYA in binding of TNF-α and its receptor. Co-immunoprecipitation was used to detect the binding of TNFR1 and TAK1-TAB2 complex. Real-time quantitative RT-PCR and western blot were used to detect the expressions of inflammation-related cytokines and proteins related with the NF-κB pathway. Luciferase reporter gene assay and chromatin coprecipitation method were used to detect the interaction between AP-1 and TGF-β1 promoter. RESULTS: TNF-α (5 ng/mL) was used to induce inflammation and proliferation in MRC-5 cells. HSYA can partially suppress the stimulation of TNF-α on proliferation and inflammatory response of MRC-5 cells. HSYA could compete with TNF-α to bind with TNFR1 and hamper the binding of TNFR1 to TAK1-TAB2 complex. In addition, HSYA could also inhibit the activation of the NF-κB signal pathway and suppress the binding of TGF-β1 promoter with AP-1. CONCLUSION: Evidence in this study suggested that HSYA affects TNF-α-induced proliferation and inflammatory response of MRC-5 cells through the NF-κB/AP-1 signaling pathway, which may provide theoretical basis for HSYA treatment in pulmonary fibrosis. |
---|